Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

New Agent Shows Potential in Battling Renal Cancer

By BiotechDaily International staff writers
Posted on 27 Feb 2013
Image: The compound TIR-199 holds much promise in the laboratory in fighting renal cancer (Photo courtesy of the University of California, Riverside).
Image: The compound TIR-199 holds much promise in the laboratory in fighting renal cancer (Photo courtesy of the University of California, Riverside).
Chemists have developed a substance in the laboratory that has potential applications in fighting renal cancer.

The compound, called IR-199, targets the proteasome, a cellular complex in renal cancer cells, similar to the way the drug bortezomib, approved by the US Food and Drug Administration, targets and blocks the proteasome in multiple myeloma cells, a cancer that arises in bone marrow.

Dr. Michael Pirrung, a distinguished professor of chemistry at the University of California, Riverside (USA;), reported on the findings on the development of TIR-199 on February 19, 2013, at the 5th International Conference on Drug Discovery and Therapy, held in Dubai (UAE).

Functioning similar to a cellular garbage dump, the proteasome degrades proteins. Agents that suppress the action of proteasomes are called proteasome inhibitors, and have been shown to have activity against a range of cancer cell lines, although with varied results. Bortezomib, for instance, although effective against multiple myeloma, has numerous side effects because cells other than bone marrow cells are affected. “The novel feature of our new proteasome inhibitor, TIR-199, is that it is nearly as potent as bortezomib, but is selective in inhibiting the growth of only renal cancer cell lines,” Dr. Pirrung said. “It’s what makes TIR-199 attractive.”

The TIR-199 project at UC Riverside began approximately four years ago after a multidisciplinary, international group of scientists reported on a class of compounds that act on the proteasome. These compounds are the “syringolin” natural products—such as a compound generated naturally by the wheat-infecting bacterium Pseudomonas syringae. TIR-199 is a synthetic relative of syringolin. “At UCR we began to work on, and completed the synthesis of, two compounds from this class of compounds,” Dr. Pirrung said. “Of the two, TIR-199 showed most promise.”

Dr. Pirrung’s laboraroty first shipped TIR-199 samples to the University of Hawaii, Hilo, where Dr. André Bachmann, an associate professor of pharmaceutical sciences and Dr. Pirrung’s collaborator, researched TIR-199 in assays for how it worked against the proteasome. Dr. Bachmann then tested the compound against a limited number of cancer cell lines that demonstrated that TIR-199 was effective against the cancer cells. However, it still is not known, however, was if TIR-199 was toxic to normal cells.

Encouraged by these results, Dr. Pirrung submitted TIR-199 samples to the National Cancer Institute at the US National Institutes of Health (Bethesda, MD, USA), where the compound was subjected to a stringent 60-cell screening used typically to assess compounds for their effectiveness in fighting 60 types of cancer, including lung, leukemia, colon, brain, breast, ovarian, prostate, and renal cancers.

“We were very excited when the NCI informed us that TIR-199 has excellent potential to be moved to drug development because of its selective activity against renal cancer,” Dr. Pirrung said. “This is good news also because the NCI scientists told us there really are no good drugs out there to fight renal cancer.”

In the next phase, the NCI will evaluate TIR-199 on cells cultured in a hollow fiber that partially imitates the body by providing a three-dimensional (3D) setting. If the test findings are promising, TIR-199 will be assessed on lab mice.

The UCR Office of Technology Commercialization has filed a patent application on TIR-199 and is currently looking for collaborators in industry interested in developing the compound commercially. Several biotechnology companies have already shown interest. “We still have to fine-tune TIR-199 in the lab because some aspects--certain structural elements within it--make it easily metabolized,” Dr. Pirrung said. “But now that we have a good handle on how structural changes in the compound affect anticancer activity and how the parent drug binds to the proteasome, we are pretty confident of making a better version--the second generation--of TIR-199.”

Related Links:

University of California, Riverside



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).

Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing... Read more

Business

view channel

Cancer Immunotherapy Sector Predicted to Surge to USD 9 Billion Across Major Pharma Through 2022

The immunotherapy market will experience substantial growth through 2022, increasing from USD 1.1 billion in 2012 to nearly USD 9 billion in 2022 (corresponding to 23.8% annual growth) in the United Kingdom, United States, France, Germany, Italy, Spain, and Japan, according to recent market research. This notable growth... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.