Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Treatment with Fleeceflower Derivative Blocks Plaque Formation in Mouse Alzheimer's Disease Model

By BiotechDaily International staff writers
Posted on 26 Feb 2013
A compound derived from traditional Chinese herbal medicine prevented development of amyloid plaques when administered to young animals in a mouse model of Alzheimer's disease and reversed plaque formation when administered to older animals.

Investigators at the Capital Medical University (Beijing, China) worked with the APPV717I transgenic (Tg) mouse Alzheimer's disease model. In previous studies, these mice demonstrated cognitive impairments beginning at four months of age and developed amyloid plaques in the brain that were evident by 10 months.

In the current study Tg mice were treated with varying doses of tetrahydroxystilbene glucoside (TSG), the active compound derived from the Chinese herbal medicine tuber fleeceflower (Polygonum multiflorum Thunb). The drug was given to 4- or 10- month-old animals for a period of six months. At the end of the treatment, cDNA microarray analysis, reverse transcription PCR, western blotting, and immunochemical techniques were used to determine levels of alpha-synuclein messenger RNA (mRNA) and protein expression. Accumulation of alpha-synuclein leads to the formation of insoluble aggregates that have been implicated in several neurodegenerative diseases, including Parkinson's disease, dementia with Lewy bodies, and Alzheimer's disease.

Results published in the January 2013 issue of the journal Restorative Neurology and Neuroscience revealed that alpha-synuclein mRNA expression increased in the hippocampus of four-month to 16-month old Tg mice compared with age-matched non-Tg controls. Alpha-synuclein protein expression in the hippocampus also increased significantly in four-month to 16-month old Tg mice. Significant down-regulation of alpha-synuclein mRNA and protein expression in the hippocampus was found after treatment with TSG for six months in both 10- and 16-month-old Tg mice. Production of dimers and tetramers of alpha-synuclein protein in Tg mice was inhibited after treatment with TSG.

The expression and aggregation of alpha-synuclein increased in an age-dependent fashion in Tg mice. TSG not only prevented over-expression of alpha-synuclein at an early stage, but also reversed the increased expression of alpha-synuclein and inhibited aggregation at the late stage of Tg mice. Therefore, TSG may have potential to prevent and treat Alzheimer's disease.

"Our results raise the possibility that TSG might be a novel compound for the treatment of Alzheimer's disease and dementia with Lewy body," said first author Dr. Lan Zhang, associate professor of pharmacology at Capital Medical University. "The role of alpha-synuclein, especially in the early phase of Alzheimer's disease, and its interaction with amyloid-beta should be considered when developing new therapeutic strategies to target Alzheimer's disease."

Related Links:

Capital Medical University



Channels

Genomics/Proteomics

view channel
Image: Cancer cells, left, were pretreated with a drug that blocks the ERK signal, and right, without the pretreatment. Top cells are untreated, while the bottom ones are stimulated (Photo courtesy of the Weizmann Institute of Science).

Prevention of ERK Nuclear Translocation Blocks Cancer Proliferation in Animal Models

A team of cell biologists has shown that the cancer promoting effects of ERK dysregulation can be blocked by low molecular weight drugs that prevent translocation of this kinase from the cells' cytoplasm... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

21 Apr 2015 - 23 Apr 2015
21 Apr 2015 - 23 Apr 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.