Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Loss of Specific MicroRNA Spurs Drug Resistance in Breast Cancer Cells

By BiotechDaily International staff writers
Posted on 17 May 2012
A study determined that development of resistance to the chemotherapeutic drug tamoxifen by breast tumors was due to the disappearance of a specific microRNA.

MicroRNAs are snippets of about 20 nucleotides that block gene expression by attaching to molecules of messenger RNA (mRNA) in a fashion that prevents them from transmitting the protein synthesizing instructions they had received from the DNA.

In the study, investigators at the German Cancer Research Center (Heidelberg, Germany) related genome-wide miRNA microarray analyses of breast tumors to the appearance in the tumors of resistance to tazmoxifen.

They reported in the April 16, 2012, online edition of the journal Oncogene that the microRNA miRNA-375 was among the top downregulated miRNAs in resistant cells. Reexpression of miR-375 was sufficient to resensitize tumor cells to tamoxifen and partly reversed the epithelial–mesenchymal transition (EMT), which is characteristic of tumor cells.

A combination of mRNA profiling, bioinformatics analysis, and experimental validation identified the protein metadherin (MTDH) as a direct target of miR-375. Metadherin is an oncogenic protein that is normally blocked by miR-375. The importance of MTDH was confirmed in experiments with tumor cells that lacked the MTDH gene. In these tumors, even in the absence of miR-375, no resistance to tamoxifen arose.

“The analysis of microRNAs in breast cancer has put us on the track of metadherin. We will possibly be able to specifically influence the cancer-promoting properties of this protein in the future,” said coauthor Dr. Stefan Wiemann, associate professor of molecular genome analysis at the German Cancer Research Center. “Resistances to drugs are the main reason why therapies fail and disease progresses in many cancers. We want to understand what goes on in the cells when this happens so we can develop better therapies in the future.”

Related Links:

German Cancer Research Center



comments powered by Disqus

Channels

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Lab Technologies

view channel
Image: The UC Santa Cruz Ebola Genome Portal contains links to the newly created Ebola browser and to scientific literature on the deadly virus (Photo courtesy of UCSC).

Ebola Genome Browser Now Online to Help Scientists’ Respond to Crisis

A US genomics institute has just released a new Ebola genome browser to help international researchers develop a vaccine and antiserum to help stop the spread of the Ebolavirus. The investigators led... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.