Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PZ HTL SA

Anticancer Nanochains Slow Growth of Triple-Negative Breast Cancer in Rodent Models

By BiotechDaily International staff writers
Posted on 01 May 2012
Novel nanoparticles comprising a short chain of magnetic particles and a liposome loaded with the drug doxorubicin were dramatically more effective than traditional chemotherapy in treating animal models of triple-negative breast cancer.

Investigators at Case Western Reserve University (Cleveland, OH, USA) were seeking a solution to the uneven distribution of drug-containing nanoparticles that resulted in most tumor cells not being exposed to the toxic agent.

They constructed a new type of “nanochain” from magnetic nanoparticles made of iron oxide that were arranged around a liposome loaded with the anticancer drug doxorubicin. The liposome prevented the drug from entering the blood stream, thereby greatly reducing its toxicity to normal tissues. Toxicity was further reduced by filling the liposomes with a dosage of the drug that was only 5% to 10% of the dose of doxorubicin used in standard chemotherapy. When the liposomes reached the target tumor, the magnetic nanoparticle chains were stimulated by an electric field that caused them to vibrate and disrupt the liposomal membrane, which dumped the toxic contents of the liposomes directly into the tumor.

Nanochains were injected into both rat and mouse models of triple-negative breast cancer. Results published in the April 9, 2012, online edition of the journal ACS Nano revealed that the nanoparticles displayed prolonged blood circulation and significant deposition into the tumors growing in the rodent. Tumor growth in rats following nanochain treatment was less than half that of rats treated traditionally. In rats that received two doses of nanochains, tumor growth was reduced to one-tenth that of rats treated traditionally. Rats that received one treatment survived an average of 25 days and those treated twice, 46 days, compared to 15 days for traditionally treated rats. In mice, nanochain treatment caused nearly a 4-fold increase in cancer cell apoptosis as compared to traditional chemotherapy.

“Other nanotechnology has been used to get a drug inside a tumor, but once the drug gets in the door, it stays by the door, missing most of the building,” said senior author Dr. Efstathios Karathanasis, professor of biomedical engineering at Case Western Reserve University. “We used a different kind of nanotechnology to smuggle the drug inside the tumor and to explode the bomb, releasing the drug in its free form to spread throughout the entire tumor.”

Related Links:

Case Western Reserve University




RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
BIOSIGMA S.R.L.
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: The Human Protein Atlas is tissue-based map of the human proteome (Photo courtesy of the Human Protein Atlas).

Open Source Tissue-Based Map of the Human Proteome Launched

Constructed with 13 million annotated images, an interactive database has been created to show the distribution of proteins in all major tissues and organs of the human body. Ten years after the completion... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.