Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Anticancer Nanochains Slow Growth of Triple-Negative Breast Cancer in Rodent Models

By BiotechDaily International staff writers
Posted on 01 May 2012
Print article
Novel nanoparticles comprising a short chain of magnetic particles and a liposome loaded with the drug doxorubicin were dramatically more effective than traditional chemotherapy in treating animal models of triple-negative breast cancer.

Investigators at Case Western Reserve University (Cleveland, OH, USA) were seeking a solution to the uneven distribution of drug-containing nanoparticles that resulted in most tumor cells not being exposed to the toxic agent.

They constructed a new type of “nanochain” from magnetic nanoparticles made of iron oxide that were arranged around a liposome loaded with the anticancer drug doxorubicin. The liposome prevented the drug from entering the blood stream, thereby greatly reducing its toxicity to normal tissues. Toxicity was further reduced by filling the liposomes with a dosage of the drug that was only 5% to 10% of the dose of doxorubicin used in standard chemotherapy. When the liposomes reached the target tumor, the magnetic nanoparticle chains were stimulated by an electric field that caused them to vibrate and disrupt the liposomal membrane, which dumped the toxic contents of the liposomes directly into the tumor.

Nanochains were injected into both rat and mouse models of triple-negative breast cancer. Results published in the April 9, 2012, online edition of the journal ACS Nano revealed that the nanoparticles displayed prolonged blood circulation and significant deposition into the tumors growing in the rodent. Tumor growth in rats following nanochain treatment was less than half that of rats treated traditionally. In rats that received two doses of nanochains, tumor growth was reduced to one-tenth that of rats treated traditionally. Rats that received one treatment survived an average of 25 days and those treated twice, 46 days, compared to 15 days for traditionally treated rats. In mice, nanochain treatment caused nearly a 4-fold increase in cancer cell apoptosis as compared to traditional chemotherapy.

“Other nanotechnology has been used to get a drug inside a tumor, but once the drug gets in the door, it stays by the door, missing most of the building,” said senior author Dr. Efstathios Karathanasis, professor of biomedical engineering at Case Western Reserve University. “We used a different kind of nanotechnology to smuggle the drug inside the tumor and to explode the bomb, releasing the drug in its free form to spread throughout the entire tumor.”

Related Links:

Case Western Reserve University




Print article

Channels

Genomics/Proteomics

view channel
Image: An artistic rendering of the Zika virus structure (Photo courtesy of Dr. Guntur Fibriansah, Duke-NUS Medical School).

High Resolution Structure of Zika virus Expected to Aid Vaccine Development

A team of molecular virologists used advanced cryo-electron microscopy techniques to establish a high-resolution structure for the Zika virus, a formerly neglected pathogen that has recently been associated... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.