Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Safe, Low Doses of Highly Toxic Anticancer Drugs Effectively Block Tumor Growth

By BiotechDaily International staff writers
Posted on 12 Apr 2012
Print article
Low doses of two highly toxic anticancer drugs have been shown to effectively inhibit tumor development by removing methyl groups from DNA and thereby activating genes that prevent cancerous growth.

The two drugs are azacitidine and the closely related decitabine. These drugs hypomethylate DNA by inhibiting the enzyme DNA methyltransferase. In the presence of azacitidine methyltransferases incorporate the drug into DNA during replication and into RNA during transcription in the cell. Azacitidine acts as a false substrate and potent inhibitor of methyltransferases leading to reduction of DNA methylation - affecting the way cell regulation proteins are able to bind to the DNA/RNA substrate. Inhibition of DNA methylation occurs through the formation of stable complexes between the molecule and DNA methyltransferases, thereby saturating cell methylation machinery. Decitabine functions in a similar manner to azacitidine, although decitabine can only be incorporated into DNA strands while azacitidine can be incorporated into both DNA and RNA chains.

Investigators at Johns Hopkins University (Baltimore, MD, USA) worked with six leukemia cell lines, seven leukemia patient samples, three breast cancer cell lines, seven breast tumor samples (including four samples of tumors that had spread to the lung), one lung cancer cell line, and one colon cancer cell line. They treated cultures of these cell lines with low-doses of the drugs for three days and then allowed the drug-treated cells to rest for a week. Treated cells and tumor samples were injected into mice, and tumor development was observed for up to 20 weeks.

Results published in the March 16, 2012, issue of Cancer Cell revealed that transient exposure of cultured and primary leukemic and epithelial tumor cells to clinically relevant nanomolar doses of the drugs did not cause immediate cytotoxicity. Nonetheless, this treatment produced an antitumor memory response, including inhibition of subpopulations of cancer stem-like cells. These effects are accompanied by sustained decreases in genomewide promoter DNA methylation, gene reexpression, and antitumor changes in key cellular regulatory pathways. While effects varied among individual tumor cell lines, in general cancer cells reverted to a more normal state and eventually died.

“Low doses of azacitidine and decitabine may reactivate genes that stop cancer growth without causing immediate cell killing or DNA damage,” said contributing author Dr. Stephen Baylin, professor of oncology at Johns Hopkins University. “Our findings match evidence from recent clinical trials suggesting that the drugs shrink tumors more slowly over time as they repair altered mechanisms in cells and genes return to normal function, and the cells may eventually die.”

Related Links:
Johns Hopkins University




Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.