Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Disruption of Mitochondrial Enzyme Function Characterizes Some Cancers

By BiotechDaily International staff writers
Posted on 02 Jan 2012
Since mutations in the genome of cancer cells often force tumors to use metabolic pathways not found in normal cells, cancer researchers believe that drugs targeting these pathways will be able to destroy tumors with fewer adverse side effects.

Some tumors harbor mutations in the citric acid cycle (CAC or Krebs cycle) or electron transport chain (ETC) that disable normal oxidative mitochondrial function. In this regard investigators at Emory University (Atlanta, GA, USA) studied the relationship between the enzyme PDHK1 (pyruvate dehydrogenase kinase 1), an important point of control for cancer cell metabolism, and the tyrosine kinase FGFR1 (fibroblast growth factor receptor 1), which is activated in several types of cancer.

They reported in the December 23, 2011, online edition of the journal Molecular Cell that tyrosine phosphorylation enhanced PDHK1 kinase activity by promoting ATP and pyruvate dehydrogenase complex (PDC) binding. Functional PDC formed in mitochondria outside of the matrix in some cancer cells.

Expression of a mutant, nonfunctional form of PDHK1 in cancer cells led to decreased cell proliferation under hypoxia and increased oxidative phosphorylation with enhanced mitochondrial utilization of pyruvate and reduced tumor growth in xenograft nude mice.

“We and others have shown that PDHK is upregulated in several types of human cancer, and our findings demonstrate a new way that PDHK activity is enhanced in cancer cells,” said senior author Dr. Jing Chen, associate professor of hematology and medical oncology at Emory University School. “PDHK is a very attractive target for anticancer therapy because of its role in regulating cancer metabolism. We used FGFR1 as a platform to look at how metabolic enzymes are modified by oncogenic tyrosine kinases. We discovered that several oncogenic tyrosine kinases activate PDHK, and we found that many of those tyrosine kinases are found within mitochondria.”

The experimental drug dichloroacetate (DCA), which inactivates PDHK, is being evaluated in clinical trials while researchers continue to seek other, more potent inhibitors of PDHK.

Related Links:
Emory University



Channels

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.