Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Blocking Periostin Prevents Metastasis in a Mouse Cancer Model

By BiotechDaily International staff writers
Posted on 22 Dec 2011
Cancer researchers have identified a protein that seems to be required for cancer cells to metastasize successfully and established secondary tumors at sites distantly removed from the original primary tumor.

Metastatic growth in distant organs is the major cause of cancer mortality, yet this process is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites.

Investigators at the Swiss Center for Experimental Cancer Research (Lausanne, Switzerland) worked with a mouse model to look for molecular keys that could enhance a tumor's ability to establish secondary tumors successfully.

They reported in the December 7, 2011, online edition of the journal Nature that a small population of cancer stem cells was critical for metastatic colonization, and that stromal niche signals expressed by potential sites of colonization were crucial to the expansion process. They found that the protein periostin (POSTN), a component of the extracellular matrix, was expressed by fibroblasts in normal tissue and in the stroma of the primary tumor. Infiltrating tumor cells needed to induce stromal POSTN expression in the secondary target organ to initiate colonization. POSTN was required to allow cancer stem cell maintenance, and blocking its function prevented metastasis.

The investigators showed that several conditions were necessary for cancer to propagate. "In particular, we were able to isolate a protein, periostin, in the niches where metastases develop," said senior author Dr. Joerg Huelsken, professor of molecular oncology at the Swiss Center for Experimental Cancer. "Without this protein, the cancer stem cell cannot initiate metastasis; instead, it disappears or remains dormant."

Experimental treatments that blocked periostin activity produced very few side effects in mice, but the investigators caution that this does not necessarily mean the same will hold true in humans.

Related Links:
Swiss Center for Experimental Cancer Research



comments powered by Disqus

Channels

Drug Discovery

view channel

Molecule in Green Tea Used as Carrier for Anticancer Proteins

A molecule that is a key ingredient in green tea can be employed as a carrier for anticancer proteins, forming a stable and effective therapeutic nanocomplex. This new discovery could help to construct better drug-delivery systems. Some cancer treatments depend on medication comprising the therapeutic drug and a carrier... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.