Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Blocking Periostin Prevents Metastasis in a Mouse Cancer Model

By BiotechDaily International staff writers
Posted on 22 Dec 2011
Cancer researchers have identified a protein that seems to be required for cancer cells to metastasize successfully and established secondary tumors at sites distantly removed from the original primary tumor.

Metastatic growth in distant organs is the major cause of cancer mortality, yet this process is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites.

Investigators at the Swiss Center for Experimental Cancer Research (Lausanne, Switzerland) worked with a mouse model to look for molecular keys that could enhance a tumor's ability to establish secondary tumors successfully.

They reported in the December 7, 2011, online edition of the journal Nature that a small population of cancer stem cells was critical for metastatic colonization, and that stromal niche signals expressed by potential sites of colonization were crucial to the expansion process. They found that the protein periostin (POSTN), a component of the extracellular matrix, was expressed by fibroblasts in normal tissue and in the stroma of the primary tumor. Infiltrating tumor cells needed to induce stromal POSTN expression in the secondary target organ to initiate colonization. POSTN was required to allow cancer stem cell maintenance, and blocking its function prevented metastasis.

The investigators showed that several conditions were necessary for cancer to propagate. "In particular, we were able to isolate a protein, periostin, in the niches where metastases develop," said senior author Dr. Joerg Huelsken, professor of molecular oncology at the Swiss Center for Experimental Cancer. "Without this protein, the cancer stem cell cannot initiate metastasis; instead, it disappears or remains dormant."

Experimental treatments that blocked periostin activity produced very few side effects in mice, but the investigators caution that this does not necessarily mean the same will hold true in humans.

Related Links:
Swiss Center for Experimental Cancer Research



Channels

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

“Softer” Mass Spec Techniques Gain Advantage in Biomarker Discovery

Two mass spectrometry (MS) technologies, MALDI and DESI, are increasing in applications as their effectiveness is established, according to Kalorama Information (New York, NY, USA) in its report “Proteomics Markets for Research and IVD Applications (Mass Spectrometry, Chromatography, Microarrays, Electrophoresis, Immunoassays,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.