Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Beta-lapachone Highly Effective Against Non-small Cell Lung Cancer

By Biotechdaily staff writers
Posted on 18 Jul 2007
A recent report described the molecular mechanism used by the chemotherapeutic agent beta-lapachone to kill non-small cell lung cancer (NSCLC) tumors. NSCLC is one of the deadliest forms of cancer with a five-year survival rate of only about 15%.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) studied the action of beta-lapachone on the enzyme NAD(P)H:quinone oxidoreductase-1 (NQO1). NQO1 is absent or nearly absent in normal tissues but highly expressed in NSCLC tumors.

Results published in the July 3, 2007, online edition of the Proceedings of the [U.S.] National Academy of Sciences revealed that NSCLC cells grown in tissue culture were killed by a high dose of beta-lapachone given for only two to four hours. Normal cells not expressing NQO1 were not damaged by the drug.

Beta-lapachone induced formation of active radicals that caused damage to the cancer cells' DNA while at the same time disrupting the cells' ability to repair their DNA (by inhibiting the DNA repair enzyme topoisomerase I), ultimately leading to the death of the cells. Since treating tumor cells with radiation also causes DNA damage, co-treatment with radiation and beta-lapachone was even more effective than treatment with the drug alone.

"When you irradiate a tumor, the levels of NQO1 go up,” said senior author Dr. David Boothman, professor of pharmacology and radiation oncology at the University of Texas Southwestern Medical Center. "When you then treat these cells with beta-lapachone, you get synergy between the enzyme and this agent and you get a whopping kill. Basically, we have worked out the mechanism of action of beta-lapachone and devised a way of using that drug for individualized therapy.”


Related Links:
University of Texas Southwestern Medical Center

comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Diagram illustrates the innovative process that could lead to more effective drugs against influenza infection (Photo courtesy of the Hebrew University of Jerusalem).

Researchers Show How the Influenza Virus Blocks Natural Killer Cell Recognition

A team of molecular virologists has described how the influenza virus evolved a defense mechanism to protect it from attack by the immune system's natural killer (NK) cells. The recognition of pathogen-infected... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Genome-Wide Mutation-Searching Computational Software Designed for Genomic Medicine

Analysis software cross-references a patient’s symptoms with his genome sequence to help physicians in the diagnosis of disease. This software was created by a team of scientists from A*STAR’s Genome Institute of Singapore (GIS), led by Dr. Pauline Ng. The research findings were published August 3, 2014, in the journal... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.