Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

10 May 2016 - 16 May 2016
11 May 2016 - 13 May 2016

Beta-lapachone Highly Effective Against Non-small Cell Lung Cancer

By Biotechdaily staff writers
Posted on 18 Jul 2007
Print article
A recent report described the molecular mechanism used by the chemotherapeutic agent beta-lapachone to kill non-small cell lung cancer (NSCLC) tumors. NSCLC is one of the deadliest forms of cancer with a five-year survival rate of only about 15%.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) studied the action of beta-lapachone on the enzyme NAD(P)H:quinone oxidoreductase-1 (NQO1). NQO1 is absent or nearly absent in normal tissues but highly expressed in NSCLC tumors.

Results published in the July 3, 2007, online edition of the Proceedings of the [U.S.] National Academy of Sciences revealed that NSCLC cells grown in tissue culture were killed by a high dose of beta-lapachone given for only two to four hours. Normal cells not expressing NQO1 were not damaged by the drug.

Beta-lapachone induced formation of active radicals that caused damage to the cancer cells' DNA while at the same time disrupting the cells' ability to repair their DNA (by inhibiting the DNA repair enzyme topoisomerase I), ultimately leading to the death of the cells. Since treating tumor cells with radiation also causes DNA damage, co-treatment with radiation and beta-lapachone was even more effective than treatment with the drug alone.

"When you irradiate a tumor, the levels of NQO1 go up,” said senior author Dr. David Boothman, professor of pharmacology and radiation oncology at the University of Texas Southwestern Medical Center. "When you then treat these cells with beta-lapachone, you get synergy between the enzyme and this agent and you get a whopping kill. Basically, we have worked out the mechanism of action of beta-lapachone and devised a way of using that drug for individualized therapy.”


Related Links:
University of Texas Southwestern Medical Center

Print article

Channels

Genomics/Proteomics

view channel
Image: A confocal microscopy image of human fibroblasts derived from embryonic stem cells. The nuclei appear in blue, while smaller and more numerous mitochondria appear in red (Photo courtesy of Dr. Shoukhrat Mitalipov, Oregon Health & Science University).

Stem Cells Derived from Older Individuals May Carry Unsafe Mitochondrial DNA Mutations

Induced pluripotent stem cells (iPSCs) derived from the skin fibroblasts of older individuals have a likelihood of harboring mitochondrial DNA mutations, which may render them unfit for clinical applications.... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

DNA Synthesis Specialists Acquire Advanced Software Design Capabilities

An American biotech firm that develops and produces synthetic DNA has established an international presence by purchasing an Israeli genetic design software company. Twist Bioscience Corporation (San Francisco, CA, USA), a company specializing in rapid, high-quality DNA synthesis, announced that Genome Compiler Corporation... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.