Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Beta-lapachone Highly Effective Against Non-small Cell Lung Cancer

By Biotechdaily staff writers
Posted on 18 Jul 2007
A recent report described the molecular mechanism used by the chemotherapeutic agent beta-lapachone to kill non-small cell lung cancer (NSCLC) tumors. NSCLC is one of the deadliest forms of cancer with a five-year survival rate of only about 15%.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) studied the action of beta-lapachone on the enzyme NAD(P)H:quinone oxidoreductase-1 (NQO1). NQO1 is absent or nearly absent in normal tissues but highly expressed in NSCLC tumors.

Results published in the July 3, 2007, online edition of the Proceedings of the [U.S.] National Academy of Sciences revealed that NSCLC cells grown in tissue culture were killed by a high dose of beta-lapachone given for only two to four hours. Normal cells not expressing NQO1 were not damaged by the drug.

Beta-lapachone induced formation of active radicals that caused damage to the cancer cells' DNA while at the same time disrupting the cells' ability to repair their DNA (by inhibiting the DNA repair enzyme topoisomerase I), ultimately leading to the death of the cells. Since treating tumor cells with radiation also causes DNA damage, co-treatment with radiation and beta-lapachone was even more effective than treatment with the drug alone.

"When you irradiate a tumor, the levels of NQO1 go up,” said senior author Dr. David Boothman, professor of pharmacology and radiation oncology at the University of Texas Southwestern Medical Center. "When you then treat these cells with beta-lapachone, you get synergy between the enzyme and this agent and you get a whopping kill. Basically, we have worked out the mechanism of action of beta-lapachone and devised a way of using that drug for individualized therapy.”


Related Links:
University of Texas Southwestern Medical Center

Channels

Genomics/Proteomics

view channel
Image: The non-active drug is activated when it becomes localized at a site with excessive inflammation (Photo courtesy of Ben-Gurion University of the Negev).

Chimeric Drug Reduces Local Inflammation Without Causing General Immune Suppression

A novel anti-inflammatory drug is based on a chimeric molecule that avoids general immune suppression by being non-active when injected but is converted into an activate agent by leukocytes concentrated... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.