Features Partner Sites Information LinkXpress
Sign In
Demo Company

Beta-lapachone Highly Effective Against Non-small Cell Lung Cancer

By Biotechdaily staff writers
Posted on 18 Jul 2007
Print article
A recent report described the molecular mechanism used by the chemotherapeutic agent beta-lapachone to kill non-small cell lung cancer (NSCLC) tumors. NSCLC is one of the deadliest forms of cancer with a five-year survival rate of only about 15%.

Investigators at the University of Texas Southwestern Medical Center (Dallas, USA) studied the action of beta-lapachone on the enzyme NAD(P)H:quinone oxidoreductase-1 (NQO1). NQO1 is absent or nearly absent in normal tissues but highly expressed in NSCLC tumors.

Results published in the July 3, 2007, online edition of the Proceedings of the [U.S.] National Academy of Sciences revealed that NSCLC cells grown in tissue culture were killed by a high dose of beta-lapachone given for only two to four hours. Normal cells not expressing NQO1 were not damaged by the drug.

Beta-lapachone induced formation of active radicals that caused damage to the cancer cells' DNA while at the same time disrupting the cells' ability to repair their DNA (by inhibiting the DNA repair enzyme topoisomerase I), ultimately leading to the death of the cells. Since treating tumor cells with radiation also causes DNA damage, co-treatment with radiation and beta-lapachone was even more effective than treatment with the drug alone.

"When you irradiate a tumor, the levels of NQO1 go up,” said senior author Dr. David Boothman, professor of pharmacology and radiation oncology at the University of Texas Southwestern Medical Center. "When you then treat these cells with beta-lapachone, you get synergy between the enzyme and this agent and you get a whopping kill. Basically, we have worked out the mechanism of action of beta-lapachone and devised a way of using that drug for individualized therapy.”

Related Links:
University of Texas Southwestern Medical Center

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more


view channel

Purchase of Biopharmaceutical Company Will Boost Development of Nitroxyl-Based Cardiovascular Disease Drugs

A major international biopharmaceutical company has announced the acquisition of a private biotech company that specializes in the development of drugs for treatment of cardiovascular disease. Bristol-Myers Squibb Co. (New York, NY, USA) has initiated the process to buy Cardioxyl Pharmaceuticals Inc. (Chapel Hill, NC, USA).... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.