We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Aurintricarboxylic Acid Proposed as Basis of New Glioblastoma Treatment Plan

By LabMedica International staff writers
Posted on 01 Feb 2017
Print article
Image: A ball-and-stick model of the aurintricarboxylic acid (ATA) molecule (Photo courtesy of Wikimedia Commons).
Image: A ball-and-stick model of the aurintricarboxylic acid (ATA) molecule (Photo courtesy of Wikimedia Commons).
The compound aurintricarboxylic acid (ATA) has been identified as a possible new therapeutic agent for treatment of patients with the deadly brain cancer glioblastoma multiforme (GBM).

GBM is the most common primary tumor of the central nervous system and is almost always fatal. The aggressive invasion of GBM cells into the surrounding normal brain makes complete surgical removal impossible, significantly increases resistance to the standard therapy regimen, and virtually assures tumor recurrence. Median survival for newly diagnosed GBM is 14.6 months and declines to eight months for patients with recurrent GBM. Treatment of glioblastoma usually comprises surgical removal of the tumor followed by radiation treatment and chemotherapy using the drug temozolomide (TMZ). However, the penetration of the tumor into adjacent brain tissue prevents the surgical removal of all tumor cells, which usually develop resistance to TMZ.

Investigators at the Translational Genomics Research Institute have been seeking a better approach for treating GBM. In previous studies they had found that development of GBM was linked to TWEAK (Tumor necrosis factor-like weak inducer of apoptosis), a member of the tumor necrosis factor (TNF) superfamily, which could stimulate glioma cell invasion and survival via binding to fibroblast growth factor-inducible 14 (Fn14) and subsequent activation of the transcription factor NF-kappaB.

In the current study, to discover small molecule inhibitors capable of disrupting the TWEAK-Fn14 signaling axis, the investigators utilized a cell-based drug-screening assay using HEK293 cells engineered to express both Fn14 and a NF-kappaB-driven firefly luciferase reporter protein.

The investigators reported in the January 17, 2017, online edition of the journal Oncotarget that during screening of 1280 pharmacologically active compounds they had identified aurintricarboxylic acid (ATA) as an agent that suppressed TWEAK-Fn14-NF-kappaB dependent signaling, but not TNFalpha-TNFR-NF-kappaB driven signaling. ATA is used to inhibit protein biosynthesis in its initial stages, and it is frequently used in biological experiments as a protein inhibitor.

The investigators showed that ATA repressed TWEAK-induced glioma cell chemotactic migration and invasion via inhibition of Rac1 activation but had no effect on cell viability or Fn14 expression. In addition, ATA treatment enhanced glioma cell sensitivity to both TMZ and radiation-induced cell death.

"These data demonstrate that ATA presents a scaffold structure that could be modified in ways to improve its properties and to develop as a potential therapeutic agent to limit invasion and enhance chemotherapeutic drug efficacy in GBM," said senior author Dr. Nhan Tran, associate professor of cancer and cell biology at the Translational Genomics Research Institute.

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Cancer Mutation Profiling Liquid Kit
OncoScreen Plus

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.