Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

12 Apr 2017 - 14 Apr 2017
22 Apr 2017 - 26 Apr 2017
New products on world’s medical product marketplace:

Carbon Monoxide-Releasing Compounds as Novel Antibacterial Drugs

By BiotechDaily International staff writers
Posted on 19 Jan 2017
Print article
Image: A gonorrhea infection caused by the bacterium Neisseria gonorrhoeae (Photo courtesy of the University of York).
Image: A gonorrhea infection caused by the bacterium Neisseria gonorrhoeae (Photo courtesy of the University of York).
A team of British molecular microbiologists has demonstrated the potential use of carbon monoxide (CO)-releasing compounds for treatment of gonorrhea.

Gonorrhea, which is caused by the bacterium Neisseria gonorrhoeae, has developed some highly drug-resistant strains, which has raised concern that the second most common sexually transmitted infection in England may become untreatable.

Investigators at the University of York have been examining the potential for carbon monoxide-releasing molecules (CO-RMs) as antimicrobial agents, which represents an exciting prospective in the fight against antibiotic resistance. This field is especially attractive since Trypto-CORM, a tryptophan-containing manganese(I) carbonyl compound, was shown to be toxic against E. coli following photo-activation.

The investigators reported in the December 6, 2016, online edition of the journal MedChemComm that Trypto-CORM was toxic against Neisseria gonorrhoeae in the absence of photoactivation. Trypto-CORM toxicity could be reversed by the high CO affinity globin leg-hemoglobin (Leg-Hb), indicating that the toxicity was due to CO release.

Release of CO from Trypto-CORM in the dark was also detected with Leg-Hb (but not myoglobin) in vitro. Since N. gonorrhoeae is more sensitive to CO-based toxicity than other model bacterial pathogens, it may prove to be a viable candidate for antimicrobial therapy using CO-RMs.

Contributing author Dr. Ian Fairlamb, professor of chemistry at the University of York, said, "The carbon monoxide molecule targets the engine room, stopping the bacteria from respiring. Gonorrhea only has one enzyme that needs inhibiting and then it cannot respire oxygen and it dies. People will be well aware that CO is a toxic molecule but that is at high concentrations. Here we are using very low concentrations, which we know the bacteria are sensitive to. We are looking at a molecule that can be released in a safe and controlled way to where it is needed. We think our study is an important breakthrough. It is not the final drug yet but it is pretty close to it. People might perceive gonorrhea as a trivial bacterial infection, but the disease is becoming more dangerous and resistant to antibiotics."


Print article

Channels

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

Collaborative Agreement to Aid in Setting Guidelines for Evaluating Potential Ebola Therapy

Cooperation between an Israeli biopharmaceutical company and medical branches of the US government is designed to set ground rules for continued evaluation of an experimental therapy for Ebola virus disease. RedHill Biopharma Ltd. (Tel Aviv, Israel), a biopharmaceutical company primarily focused on development and c... Read more
Copyright © 2000-2017 Globetech Media. All rights reserved.