We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Maintaining Normal Paneth Cell Levels Prevents Intestinal Bowel Disease

By LabMedica International staff writers
Posted on 06 Oct 2016
Print article
Image: As IBD worsens, levels of the gene regulator EZH2 increase, lowering numbers of protective Paneth cells (Photo courtesy of Sanford Burnham Prebys Medical Discovery Institute).
Image: As IBD worsens, levels of the gene regulator EZH2 increase, lowering numbers of protective Paneth cells (Photo courtesy of Sanford Burnham Prebys Medical Discovery Institute).
The enzyme PKC-lamda/iota (protein kinase C-lamda/iota) plays a critical role in the intestinal epithelium where it influences development of inflammatory diseases and cancer through its regulation of Paneth cell metabolism.

Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5+ stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation.

Investigators at the Sanford Burnham Prebys Medical Discovery Institute (La Jolla, CA, USA) reported in the September 20, 2016, online edition of the journal Cell Reports that PKC-lamda/iota was required for Paneth cell differentiation through the control of the enzyme EZH2 (Enhancer of zeste homolog 2) stability by direct phosphorylation. The selective inactivation of PKC-lamda/iota in epithelial cells resulted in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumor formation.

The investigators found that PKC-lamda/iota expression in human Paneth cells decreased with the progression of Crohn’s disease, a chronic inflammatory condition. In addition, survival analysis of colorectal cancer patients revealed that low PRKC-lamda/iota levels correlated with significantly worse patient survival rates.

Blocking activity of EZH2 enabled the number of Paneth cells to return normal, so drug treatment to inhibit EZH2 could be a new approach for slowing the progression of inflammatory bowel disease (IBD), such as Crohn's disease. EZH2 has been an attractive target for anti-cancer therapy because it helps cancerous cells divide and proliferate. It is found in larger amounts than in healthy cells in a wide range of cancers including breast, prostate, bladder, uterine, and renal cancers, as well as melanoma and lymphoma. EZH2 is a gene suppressor, so when it becomes overexpressed, many tumor suppressor genes that are normally turned on, are turned off. Inhibition of EZH2 function shrinks malignant tumors in some reported cases because those tumor suppressor genes are not silenced by EZH2.

“The intestine is protected by specialized cells, called Paneth cells, that secrete antimicrobial peptides,” said senior author Dr. Jorge Moscat, professor in the NCI-designated cancer center at the Sanford Burnham Prebys Medical Discovery Institute. “We found that maintaining normal numbers of Paneth cells requires PKC-lambda/iota, and that the amount of PKC-lambda/iota decreases as IBD gets worse. We also discovered a way to prevent Paneth cell loss - inhibiting a protein called EZH2, which could be a new therapeutic strategy for IBD. EZH2 inhibitors are currently being developed by the pharmaceutical industry to treat other cancers, so they could be tested for IBD relatively soon. But first, we need to do preclinical studies to test whether they block progression of the disease.”

Related Links:
Sanford Burnham Prebys Medical Discovery Institute

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.