We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Antibiotics-Induced Changes to Gut Bacteria Influence Expression of Drug Side Effects

By LabMedica International staff writers
Posted on 23 Aug 2016
Print article
Image: Antibacterial drugs cause changes in the intestinal flora. These changes have an influence on the capacity of the liver and kidneys to detoxify and eliminate therapeutic drugs due to large changes in the metabolizing and transport proteins (Photo courtesy of Dr. Sumio Ohtsuki, Kumamoto University).
Image: Antibacterial drugs cause changes in the intestinal flora. These changes have an influence on the capacity of the liver and kidneys to detoxify and eliminate therapeutic drugs due to large changes in the metabolizing and transport proteins (Photo courtesy of Dr. Sumio Ohtsuki, Kumamoto University).
Antibiotic treatment disrupts the normal bacterial population of the gut resulting in changes in how the body deals with the breakdown and transport of drugs and other metabolites, which may increase the impact of deleterious side effects.

Dysbiosis (alteration of intestinal flora) is associated with various physiological changes including diseases. Investigators at Kumamoto University (Japan) sought to clarify the effect of dysbiosis on protein expression levels in mouse liver and kidney by quantitative proteomic analysis. They focused on particular drug-metabolizing enzymes and transporters in order to investigate the potential impact of dysbiosis on drug pharmacokinetics.

The investigators worked with three different mouse models: germ-free mice, which were free of intestinal bacteria since birth; mice that had received antibacterial drugs for five consecutive days; and a control group of mice with naturally occurring intestinal flora. Proteomic techniques were used to identify changes in the levels of proteins linked to drug metabolism and transport in the liver and kidneys of the mouse groups.

Results published in the August 1, 2016, issue of the journal Molecular Pharmaceutics revealed that expression levels of 825 and 357 proteins were significantly changed in the liver and kidney, respectively, of germ-free mice (versus specific-pathogen-free mice), while 306 and 178 proteins, respectively, were changed in antibiotics-treated mice (versus vehicle controls). Among them, 52 and 16 drug-metabolizing enzyme and transporter proteins were significantly changed in the liver and kidney, respectively, of germ-free mice, while 25 and 8, respectively were changed in antibiotics-treated mice. Expression of mitochondrial proteins was also changed in the liver and kidney of both germ-free and antibiotic treated mice.

"The most significant drug-metabolizing enzyme that decreased was cytochrome P450 2b10 (Cyp2b10)," said senior author Dr. Sumio Ohtsuki, professor of pharmaceutical sciences at Kumamoto University. "Not only was the amount of the enzyme reduced nearly 96%, but the metabolic capacity of the drug in the liver was also reduced by approximately 82%. Cyp3a11, a similar type of enzyme was also reduced by about 88%. The human enzymes corresponding to these two enzymes, CYP2B6 and CYP3A4 are reported to be related to the metabolism of more than half of the pharmaceuticals on the market. The results of this study show that many drugs may be affected by changes in the intestinal flora. In the future, if it is confirmed that similar mechanisms exist in humans, we expect our research to lead to optimal dosing and a reduction in drug side effects."

Related Links:
Kumamoto University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.