We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Structure of Bacterial Polysaccharide Synthesizing Enzyme May Lead to New Drugs

By LabMedica International staff writers
Posted on 28 Dec 2015
Print article
Image: Burkholderia pseudomallei colonies of on Ashdown\'s agar after four days\' incubation showing the characteristic cornflower head morphology (magnified 5x) (Photo courtesy of Wikimedia Commons).
Image: Burkholderia pseudomallei colonies of on Ashdown\'s agar after four days\' incubation showing the characteristic cornflower head morphology (magnified 5x) (Photo courtesy of Wikimedia Commons).
A team of molecular microbiologists has determined the mode of action of a bacterial enzyme that is critical to the formation of the organism's protective capsular polysaccharide.

Burkholderia pseudomallei are the causative agent of melioidosis, a disease endemic to regions of Southeast Asia and Northern Australia. Both humans and a range of other animal species are susceptible to melioidosis, and the production of a group III polysaccharide capsule in B. pseudomallei is essential for virulence. B. pseudomallei capsular polysaccharide (CPS) I comprises unbranched manno-heptopyranose residues and is encoded by a 34.5 kilobase locus on chromosome 1. Despite the importance of this locus, the role of all of the genes within this region is unclear.

The principal B. pseudomallei CPS consists of a linear repeat of -3)-2-O-acetyl-6-deoxy-β-d-manno-heptopyranose-(1-. This CPS is critical to the virulence of this emerging pathogen and represents a key target for the development of novel therapeutics, Wcbl is one of several genes in the CPS biosynthetic cluster whose deletion leads to significant attenuation of the pathogen; unlike most others, it has no homologues of known function and no detectable sequence similarity to any protein with an extant structure.

Investigators at the University of Exeter (United Kingdom) recently presented the X-ray crystallographic structure of the WcbL protein from B. pseudomallei. They reported in the December 17, 2015, issue of the journal Chemistry and Biology that WcbL operated enzymatically through a sequential ordered Bi-Bi mechanism, loading the heptose first and then ATP. Dimeric WcbL bound ATP anti-cooperatively in the absence of heptose, and cooperatively in its presence. Modeling of WcbL suggested that heptose binding caused an elegant switch in the hydrogen-bonding network, facilitating the binding of a second ATP molecule.

In addition, the investigators screened a library of drug-like fragments, identifying hits that potently inhibited WcbL. These results provided a novel mechanism for control of substrate binding and emphasized WcbL as an attractive antimicrobial target for Gram-negative bacteria.

"We identified the most important parts of this protein that is involved in making up the outer structure of some pathogenic bacteria and found that the protein regulated itself in quite an unusual way," said first author Dr. Mirella Vivoli, associate research fellow at the University of Exeter. "We were then able to test a number of compounds and find one that blocked this action and its ability to make the sugar."

Related Links:
University of Exeter


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Plasma Control
Plasma Control Level 1

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.