We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Computer Simulations for Improved Liposome Design

By LabMedica International staff writers
Posted on 25 Oct 2015
Print article
Image: A liposome, stabilized by anchoring its membrane to a solid cord with polymeric tethers, could provide a more stable carrier for nanoparticles (Photo courtesy of ACS Nano: http://pubs.acs.org/doi/10.1021/acsnano.5b03439)
Image: A liposome, stabilized by anchoring its membrane to a solid cord with polymeric tethers, could provide a more stable carrier for nanoparticles (Photo courtesy of ACS Nano: http://pubs.acs.org/doi/10.1021/acsnano.5b03439)
The extensive use of computer simulations has enabled researchers to design an improved class of liposomes for use in targeted delivery of toxic chemotherapeutic agents.

Liposomes are vesicles comprising a hydrophilic core enclosed by a membrane that contains mostly phospholipids and sometimes one or more types of proteins. The lipid membrane shields any material that it contains (such as a drug or nucleic acid) from interaction with the blood, while the proteins recognize and interact with complementary proteins on the membrane of a diseased or dysfunctional cell.

The primary weakness of the liposome delivery method is linked to the relative fragility of the vesicle. Studies of this model of delivery have shown that in many cases less than 10% of the drugs transported by liposomes are delivered to tumor cells. Often, the liposome breaks open before it reaches its target, and the drug is absorbed into the body's organs, including the liver and spleen, resulting in toxic side effects.

Investigators at Carnegie Mellon University (Pittsburgh, PA, USA) and colleagues at the University of California, Davis (USA) and the Colorado School of Mines (Golden, CO, USA) developed computer simulations that enabled them to propose designs for more stable liposomes.

In a paper published in the September 18, 2015, online edition of the journal ACS Nano they proposed the design for a nanoparticle carrier that combined three existing motifs into a single construct: a liposome that was stabilized by anchoring it to an enclosed solid core via extended polymeric tethers that were chemically grafted to the core and physisorb into the surrounding lipid membrane.

They suggested that such a design would exhibit several enticing properties, among them: (i) the anchoring would stabilize the liposome against a variety of external stresses, while preserving an aqueous compartment between core and membrane; (ii) the interplay of design parameters such as polymer length or grafting density would enforce strong constraints on nanoparticle size and hence ensures a high degree of uniformity; and (iii) the physical and chemical characteristics of the individual constituents would equip the construct with numerous functionalities that could be exploited in many ways.

"Even with current forms of targeted drug delivery, treatments like chemotherapy are still very brutal. We wanted to see how we could make targeted drug delivery better," said senior author Dr. Markus Deserno, professor of physics at Carnegie Mellon University.

Related Links:
Carnegie Mellon University
University of California, Davis
Colorado School of Mines


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.