We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




Nanovesicles Coated with Platelet Membranes Target Cancer Cells and Reduce Doxorubicin Toxicity

By LabMedica International staff writers
Posted on 14 Oct 2015
Print article
Image: On the left is the schematic design of the TRAIL/Dox loaded platelet membrane-coated nanogel delivery system. The TRAIL is attached on the surface of membrane and Dox is loaded in the core of nanogel. On the right is a transmission electron microscope image of the drug delivery system. Black is the synthetic core nanogel, the outside shell is the platelet membrane (Photo courtesy of Quanyin Hu, joint biomedical engineering program at North Carolina State University and the University of North Carolina).
Image: On the left is the schematic design of the TRAIL/Dox loaded platelet membrane-coated nanogel delivery system. The TRAIL is attached on the surface of membrane and Dox is loaded in the core of nanogel. On the right is a transmission electron microscope image of the drug delivery system. Black is the synthetic core nanogel, the outside shell is the platelet membrane (Photo courtesy of Quanyin Hu, joint biomedical engineering program at North Carolina State University and the University of North Carolina).
A novel delivery system for the toxic chemotherapeutic drug doxorubicin (Dox) utilizes nanovesicles coated with extracted platelet membranes and the cytokine TRAIL.

Although in use for more than 40 years as a primary chemotherapy drug, Dox is known to cause serious heart problems. To prevent these, doctors may limit the amount of Dox given to each patient so that the total amount a patient receives over her or his entire lifetime is 550 milligrams per square meter, or less. Furthermore, the necessity to stop treatment to protect the patient from heart disease may diminish the usefulness of Dox in treating cancer. TRAIL is a cytokine that is produced and secreted by most normal tissue cells. It causes apoptosis primarily in tumor cells by binding to certain death receptors. Since the mid-1990s it has been used as the basis for several anticancer drugs, but was not been found to have any significant survival benefit.

Platelet membranes are a source of P-selectin proteins, which function as cell adhesion molecules (CAMs) on the surfaces of activated endothelial cells, which line the inner surface of blood vessels, and activated platelets.

Investigators at North Carolina State University (Raleigh, USA) and the University of North Carolina (Chapel Hill, USA) incorporated Dox into spherical nanovesicle gels that were subsequently coated with extracted platelet membranes and TRAIL.

The P-selectin proteins on the platelet membrane were expected to bind to CD44 proteins on the surface of cancer cells, locking the vesicles into place. TRAIL on the surface of the vesicles would attack the cancer cell membrane, and after ingestion of the nanovesicles by the cancer cells, the acidic environment inside the cells would break down the vesicles, freeing Dox to interfere with the cancer cells' nuclei. The platelet membrane-coated nanovesicles were able to survive in the circulation for up to 30 hours, as compared to approximately 6 hours for vehicles without the coating.

In a study using mice that was published in the September 29, 2015, online edition of the journal Advanced Materials, the investigators reported that the use of Dox and TRAIL in this drug delivery system was significantly more effective against large tumors and circulating tumor cells than using Dox and TRAIL in a nano-gel delivery system without the platelet membrane component.

"There are two key advantages to using platelet membranes to coat anticancer drugs," said senior author Dr. Zhen Gu assistant professor in the joint biomedical engineering program at North Carolina State University and the University of North Carolina. "First, the surface of cancer cells has an affinity for platelets - they stick to each other. Second, because the platelets come from the patient's own body, the drug carriers are not identified as foreign objects, so last longer in the bloodstream. We would like to do additional preclinical testing on this technique, and we think it could be used to deliver other drugs, such as those targeting cardiovascular disease, in which the platelet membrane could help us target relevant sites in the body."

Related Links:

North Carolina State University
University of North Carolina


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
HLX
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Xylazine Immunoassay Test
Xylazine ELISA

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: The study showed the blood-based cancer screening test detects 83% of people with colorectal cancer with specificity of 90% (Photo courtesy of Guardant Health)

Blood Test Shows 83% Accuracy for Detecting Colorectal Cancer

Colorectal cancer is the second biggest cause of cancer deaths among adults in the U.S., with forecasts suggesting 53,010 people might die from it in 2024. While fewer older adults are dying from this... Read more

Hematology

view channel
Image: The Gazelle Hb Variant Test (Photo courtesy of Hemex Health)

First Affordable and Rapid Test for Beta Thalassemia Demonstrates 99% Diagnostic Accuracy

Hemoglobin disorders rank as some of the most prevalent monogenic diseases globally. Among various hemoglobin disorders, beta thalassemia, a hereditary blood disorder, affects about 1.5% of the world's... Read more

Microbiology

view channel
Image: The new platform is designed to perform blood-based diagnoses of nontuberculosis mycobacteria (Photo courtesy of 123RF)

New Blood Test Cuts Diagnosis Time for Nontuberculous Mycobacteria Infections from Months to Hours

Breathing in nontuberculous mycobacteria (NTM) is a common experience for many people. These bacteria are present in water systems, soil, and dust all over the world and usually don't cause any problems.... Read more

Industry

view channel
Image: These new assays are being developed for use on the recently introduced DxI 9000 Immunoassay Analyzer (Photo courtesy of Beckman Coulter)

Beckman Coulter and Fujirebio Expand Partnership on Neurodegenerative Disease Diagnostics

Beckman Coulter Diagnostics (Brea, CA, USA) and Fujirebio Diagnostics (Tokyo, Japan) have expanded their partnership focused on the development, manufacturing and clinical adoption of neurodegenerative... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.