We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
LGC Clinical Diagnostics

Download Mobile App




Modifying the Macrophage Microenvironment Reduces Tuberculosis Virulence

By LabMedica International staff writers
Posted on 05 Aug 2015
Print article
Image: Mycobacterium tuberculosis (Mtb) uses environmental pH as a cue to adapt its physiology for survival in macrophages. The phoPR two-component regulatory system functions to sense environmental pH and promote Mtb pathogenesis (Photo courtesy of Michigan State University).
Image: Mycobacterium tuberculosis (Mtb) uses environmental pH as a cue to adapt its physiology for survival in macrophages. The phoPR two-component regulatory system functions to sense environmental pH and promote Mtb pathogenesis (Photo courtesy of Michigan State University).
The virulence of the bacteria causing latent tuberculosis infections can be reduced by modifying the microenvironment inside the macrophages that host the pathogen.

Mycobacterium tuberculosis must sense and adapt to host environmental cues to establish and maintain an infection. The two-component regulatory system PhoPR plays a central role in sensing and responding to acidic pH within the macrophage and is required for M. tuberculosis intracellular replication and growth in vivo. Therefore, the isolation of compounds that inhibit PhoPR-dependent adaptation may pave the way for development of new therapies to treat tuberculosis.

Investigators at Michigan State University (East Lansing, USA) screened more than 273,000 different compounds while searching for those that could attenuate or eradicate M. tuberculosis.

They identified the carbonic anhydrase inhibitor ethoxzolamide as being able to modify PhoPR regulation and reduce virulence of the tuberculosis bacterium. Ethoxzolamide binds and inhibits carbonic anhydrase, which plays an essential role in facilitating the transport of carbon dioxide and protons in the intracellular space, across biological membranes and in the layers of the extracellular space. The primary function of the enzyme in animals is to interconvert carbon dioxide and bicarbonate to maintain acid-base balance in blood and other tissues, and to help transport carbon dioxide out of tissues. The inhibition of this enzyme affects the balance of applicable membrane equilibrium systems. Carbonic anhydrase inhibitors are primarily used for the treatment of glaucoma. They may also be used to treat seizure disorder and acute mountain sickness. Because they encourage solubilization and excretion of uric acid, they can be used in the treatment of gout.

The investigators reported in the August 2015 issue of the journal Antimicrobial Agents and Chemotherapy that by employing quantitative single-cell imaging of a PhoPR-dependent fluorescent reporter M. tuberculosis strain, they were able to demonstrate that ethoxzolamide inhibited PhoPR-regulated genes in infected macrophages and mouse lungs. Moreover, ethoxzolamide reduced M. tuberculosis growth in both macrophages and infected mice.

"The compound we found inhibits TB's ability to detect acidic environments, effectively blindfolding the bacterium so it cannot resist the immune system's assault," said senior author Dr. Robert Abramovitch, assistant professor of microbiology at Michigan State University. "Basically, ethoxzolamide stops TB from deploying its weapons...shutting down its ability to grow inside certain white blood cells in the immune system. We found the compound reduces disease symptoms in mice."

"The single biggest reason for the evolution of drug-resistant strains is the long course of treatment," said Dr. Abramovitch. "It is difficult for a patient to complete the entire antibiotic course required to kill all of the bacteria. Shortening the duration will help slow the development of these resistant strains. We do not necessarily have to find drugs that kill TB, we just need to find ones that interfere with the bug's ability to sense and resist the immune system. By giving the immune system a helping hand, natural defenses can then kill the bacteria."

Related Links:

Michigan State University


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
New
Gold Member
TORCH Panel Rapid Test
Rapid TORCH Panel Test

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.