We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Small Interfering RNA Nanoparticles Accelerate Wound Healing in Mouse Model

By LabMedica International staff writers
Posted on 07 Apr 2015
Print article
Image: Imaging of burn wounds in mice by confocal microscopy indicates that those treated with FL2 siRNA nanoparticles (far right) experienced collagen deposition and hair follicle formation (Photo courtesy of the Albert Einstein College of Medicine).
Image: Imaging of burn wounds in mice by confocal microscopy indicates that those treated with FL2 siRNA nanoparticles (far right) experienced collagen deposition and hair follicle formation (Photo courtesy of the Albert Einstein College of Medicine).
The time required for wound healing in a mouse model was significantly shortened by treatment with nanoparticles that had been loaded with small interfering RNA (siRNA) that blocked the synthesis of the enzyme fidgetin-like 2 (FL2).

FL2, a fundamental regulator of cell migration, is a microtubule-severing enzyme that belongs to the fidgetin family, which plays varying roles in cellular development and function. When active, FL2 slows the migration of cells involved in the healing process into the wound.

Investigators at Albert Einstein College of Medicine (New York, NY, USA) found that depletion of FL2 from mammalian tissue culture cells resulted in a more than two-fold increase in the rate of cell movement, due in part to a significant increase in directional motility. Immunofluorescence analyses indicated that FL2 normally localized to the cell edge, importantly to the leading edge of polarized cells, where it regulated the organization and dynamics of the microtubule cytoskeleton.

To apply these findings to live animals, the investigators facilitated the uptake of FL2-specific siRNA by utilizing a nanoparticle-based delivery platform. The siRNA caused the local depletion of FL2 in mice with both cut and burn wounds by binding to the FL2 gene's messenger RNA (mRNA), which prevented the mRNA from being translated into FL2 proteins.

The investigators reported in the March 10, 2015, online edition of the Journal of Investigative Dermatology that topical application of FL2 siRNA nanoparticles to either wound type resulted in a significant enhancement in the rate and quality of wound closure both clinically and histologically relative to controls. Taken together, these results identified FL2 as a promising therapeutic target to promote the regeneration and repair of cutaneous wounds.

"SiRNAs on their own will not be effectively taken up by cells, particularly inside a living organism" said senior author Dr. David J. Sharp, professor of physiology and biophysics at Albert Einstein College of Medicine. "They will be quickly degraded unless they are put into some kind of delivery vehicle. We saw normal, well-orchestrated regeneration of tissue, including hair follicles and the skin's supportive collagen network. Not only did the cells move into the wounds faster, but they knew what to do when they got there."

"We envision that our nanoparticle therapy could be used to speed the healing of all sorts of wounds, including everyday cuts and burns, surgical incisions, and chronic skin ulcers, which are a particular problem in the elderly and people with diabetes," said Dr. Sharp.

Related Links:

Albert Einstein College of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
Real-time PCR System
GentierX3 Series

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.