We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
BIO-RAD LABORATORIES

Download Mobile App




Culture-Based High Throughput Screen Detects Potent Anti-Ovarian Cancer Drugs

By LabMedica International staff writers
Posted on 23 Feb 2015
Print article
Image: The micrograph shows a multilayered three-dimensional \"organotypic\" platform for quantitative high-throughput screening to identify new therapeutics for ovarian cancer. Fibroblasts are red. Mesothelial cells are blue. Ovarian cancer cells are green. The square image is the XY-planes (up-down, right-left). The images on the sides are Z-planes (depth) (Photo courtesy of Lengyel laboratory, University of Chicago).
Image: The micrograph shows a multilayered three-dimensional \"organotypic\" platform for quantitative high-throughput screening to identify new therapeutics for ovarian cancer. Fibroblasts are red. Mesothelial cells are blue. Ovarian cancer cells are green. The square image is the XY-planes (up-down, right-left). The images on the sides are Z-planes (depth) (Photo courtesy of Lengyel laboratory, University of Chicago).
Cancer researchers have developed a high throughput system for screening drugs against ovarian tumors that is based on inhibition of cancer cells growing in a three-dimensional culture system.

Most high throughput screening (HTS) assays for drug discovery use cancer cells grown in monolayers despite the fact that the tumor microenvironment is known to contribute to cancer metastasis and drug resistance. To incorporate the tumor microenvironment into the drug screening process, investigators at the University of Chicago (IL, USA) coated the wells of 384- and 1,536-well microtiter plates with a multilayered cellular mixture containing primary human fibroblasts, mesothelial cells, and extracellular matrix. Cultures of fluorescently labeled ovarian cancer cells from three different lines (HeyA8, SKOV3ip1, and Tyk-nu) were added to the wells and then exposed to a library of small-molecule compounds. The numbers of adhering and invasive ovarian cancer cells were counted, and the inhibitory potential of each compound evaluated.

Results published in the February 5, 2015, online edition of the journal Nature Communications revealed that in the initial screen of 2,420 compounds there were 17 compounds that inhibited cell adhesion and invasion by at least 75%. Six of these compounds were active in a dose-response relationship in all three ovarian cancer cell lines, and four compounds significantly inhibited key ovarian cancer cell functions in the early steps of metastasis at low doses. One of the compounds, beta-escin, which is isolated from the seeds of the Chinese horse chestnut, was found to inhibit tumor growth and metastasis by 97%.

"Visualizing how cancer cells interact with a tumor microenvironment that accurately reflects the complex biology of ovarian cancer should help us understand the mechanisms underlying metastatic progression as well as identify new therapeutics that can inhibit this process," said senior author Dr. Ernst Lengyel, professor of obstetrics and gynecology at the University of Chicago. "We think this novel screening system has the potential to uncover new, more effective medications that could be targeted more specifically at a patient's cancer."

Related Links:

University of Chicago


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
POCT Fluorescent Immunoassay Analyzer
FIA Go
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.