Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Biotechnology Merger to Spur Development of a Gene Therapy Approach for Treatment of Congestive Heart Failure

By BiotechDaily International staff writers
Posted on 24 Aug 2014
Rapid improvement in the treatment of congestive heart failure (CHF) is expected following the acquisition of InoCard, a German early-stage biotechnology company by uniQure, a Dutch leader in the field of gene therapy.

CHF is characterized by the inability of the cardiac muscle to provide sufficient circulatory support both at rest and during exercise. It is a rapidly progressing disease affecting some 26 million people worldwide, with patients suffering from severe heart failure facing a five-year mortality rate of over 50%.

Currently there is no cure for CHF, but this may change following the purchase of InoCard GmbH (Heidelberg, Germany) by uniQure N.V. (Amsterdam, The Netherlands). InoCard GmbH, a privately held early-stage biotechnology company, has developed an innovative AAV (adeno-associated virus)-based gene therapy approach for the long-term treatment of CHF, targeting the calcium-binding protein S100A1. The Dutch company uniQure has developed a modular platform to rapidly bring new disease-modifying therapies to patients with severe disorders.

The target of the new partnership is to develop a commercially viable gene therapy approach to restore S100A1 levels in CHF patients. Research has shown that administration of S100A1 to CHF patients has beneficial effects on contractile force, growth control of heart muscle cells, and rhythm stability of the heart and is also able to adapt the heart's energy supply to increased cardiac output. In a porcine heart failure model, treatment with InoCard's gene therapy AAV-S100A1 demonstrated a 12-month survival rate of 90%.

"The acquisition of InoCard is a further demonstration of uniQure's strategy to access the best early-stage programs in our industry and accelerate their development by the application of our proven modular platform," said Jörn Aldag, CEO of uniQure. There is strong scientific rationale that addressing calcium dysregulation leads to an astounding effect in congestive heart failure. We believe that together we will deliver the best-in-class treatment for congestive heart failure."

"Despite the continuously growing prevalence of CHF, there have been no therapeutic innovations in decades. InoCard has successfully laid the basis for the development of a long-term, causative treatment of this devastating disease," said Dr. Patrick Most, founder of InoCard. "We believe that combining our promising S100A1 therapy with uniQure's capabilities in innovating safe and effective gene therapies has the potential to transform the treatment of cardiovascular diseases."

Related Links:

uniQure N.V.



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.