Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

Sonrgy in Licensing Agreement with UC San Diego for Drug Delivery Nanotech

By Doris Mendieta
Posted on 17 Feb 2014
Sonrgy, Inc. (San Diego, CA, USA), a biotechnology company developing focused drug delivery technologies, has obtained an exclusive license agreement with the University of California (UC; USA) for the company’s core technology, an ultrasound-sensitive drug delivery platform.

The agreement gives the company the sole rights to develop and market the technology worldwide. Protecting the basic technology will establish a significant barrier to potential competitors, and is a vital step towards bringing the platform to the clinic.

Based on research conducted in the lab of Prof. Sadik Esener at the UC San Diego Moores Cancer Center (USA), “the SonRx technology addresses longstanding challenges related to stability and controlled release in nanoscale drug delivery,” stated Dr. Michael Benchimol, Sonrgy’s chief technology officer. “We are excited to initiate the next steps of its commercial development.”

Sonrgy is a preclinical stage biotechnology company that is developing a targeted chemotherapy delivery platform to improve survival and quality of life for millions of cancer patients. Sonrgy’s tiny nanocarriers safely transport potent chemotherapy drugs to cancer tumors and release high doses on command in response to a focused beam of ultrasound. These carriers convey drugs directly at the tumor cell sites, avoiding the many serious side effects of toxic chemotherapy circulating in the blood stream.

Nanocarriers can deliver chemotherapy before surgery to reduce tumor size, after surgery to prevent recurrence, and in settings when surgery cannot block tumor growth. This distinctive approach to delivering chemotherapy can be applied to many tumors and it enables a more intensive treatment of the cancer, potentially optimizing effectiveness while reducing harmful effects on the rest of the body.

Related Links:

University of California, San Diego Moores Cancer Center
Sonrgy



Channels

Genomics/Proteomics

view channel
Image: In mice, mitochondria (green) in healthy (left) and Mfn1-deficient heart muscle cells (center) are organized in a linear arrangement, but the organelles are enlarged and disorganized in Mfn2-deficient cells (right) (Photo courtesy of the Rockefeller Press).

Cell Biologists Find That Certain Mitochondrial Diseases Stem from Coenzyme Q10 Depletion

A team of German cell biologists has linked the development of certain mitochondrial-linked diseases to depletion of the organelles' pool of coenzyme Q10 brought about by mutation in the MFN2 gene, which... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Lab Technologies

view channel
Image: The FLUOVIEW FVMPE-RS Gantry microscope (Photo courtesy of Olympus).

New Multiphoton Laser Scanning Microscope Configurations Expand Research Potential

Two new configurations of a state-of-the-art multiphoton laser scanning microscope extend the usefulness of the instrument for examining rapidly occurring biological events and for obtaining images from... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.