Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
JIB
GLOBETECH PUBLISHING

GE to Expand in Biomedical and Life Sciences with Strategic Acquisitions from Thermo Fisher Scientific

By BiotechDaily International staff writers
Posted on 15 Jan 2014
General Electric (GE; Fairfield, CT, USA) and Thermo Fisher Scientific (Waltham, MA, USA) have entered into an agreement for GE’s subsidiary GE Healthcare (Little Chalfont, UK) to acquire cell culture media and sera, gene modulation, and magnetic beads businesses from Thermo Fisher for approximately USD 1.06 billion. The three businesses to be acquired generated combined annual revenues of approximately USD 250 million in 2013.

GE Healthcare’s leadership in medical diagnostic technology includes its USD 4 billion life sciences business. The acquisition, anticipated to close in early 2014 (subject to regulatory approvals), will allow GE to expand its offering and development of technologies for the discovery and manufacturing of innovative new medicines, cell therapies, vaccines, and diagnostics in the biomedical sector of its growing life sciences division. It will also extend GE’s bioprocessing manufacturing footprint in Asia, the Americas, and Europe.

Thermo Fisher’s HyClone cell culture media and sera products are highly complementary to GE Healthcare’s established technologies for cell biology research and biopharmaceutical manufacturing, enabling GE to offer its customers a substantially wider range of technologies and services. Thermo Fisher’s gene modulation technologies complement GE’s established technologies for drug discovery research, and the Sera-Mag magnetic beads product line extends GE’s existing technologies in protein analysis and medical diagnostics. The complementary product offerings and strong strategic fit of the acquisitions will also enable GE Healthcare to expand and accelerate the development of new “end-to-end” technologies.

“Life sciences is one of our strongest and fastest-growing business areas, driven by the world’s demand for improved diagnostics and new, safer medicines. Combining GE’s engineering expertise with our capabilities in life sciences is already bringing great benefits to industry, research, and patients. This deal [...] will help us realize our vision of bringing better healthcare to more people at lower cost,” said John Dineen, president and CEO, GE Healthcare.

“We look forward to the HyClone cell culture and other businesses joining the GE family. They are a great fit with our key areas of focus, and bring exciting new technologies, enhanced manufacturing capabilities as well as a great group of talented people to help grow our business,” said Kieran Murphy, president and CEO of GE Healthcare’s life sciences division. “In addition to providing us with new approaches to drug discovery and biomedical research, this acquisition is a significant step forward for our customers in biopharmaceutical manufacturing. They will benefit immediately from an expanded range of “start-to-finish” technologies that will help them improve product yields and reduce time-to-market. By expanding our production facilities to three continents, we will be able to offer the biopharmaceutical industry greater confidence in the security of supply of cell culture media and sera.”

Related Links:
General Electric
GE Healthcare
Thermo Fisher Scientific


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.