Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

GE to Expand in Biomedical and Life Sciences with Strategic Acquisitions from Thermo Fisher Scientific

By BiotechDaily International staff writers
Posted on 15 Jan 2014
General Electric (GE; Fairfield, CT, USA) and Thermo Fisher Scientific (Waltham, MA, USA) have entered into an agreement for GE’s subsidiary GE Healthcare (Little Chalfont, UK) to acquire cell culture media and sera, gene modulation, and magnetic beads businesses from Thermo Fisher for approximately USD 1.06 billion. The three businesses to be acquired generated combined annual revenues of approximately USD 250 million in 2013.

GE Healthcare’s leadership in medical diagnostic technology includes its USD 4 billion life sciences business. The acquisition, anticipated to close in early 2014 (subject to regulatory approvals), will allow GE to expand its offering and development of technologies for the discovery and manufacturing of innovative new medicines, cell therapies, vaccines, and diagnostics in the biomedical sector of its growing life sciences division. It will also extend GE’s bioprocessing manufacturing footprint in Asia, the Americas, and Europe.

Thermo Fisher’s HyClone cell culture media and sera products are highly complementary to GE Healthcare’s established technologies for cell biology research and biopharmaceutical manufacturing, enabling GE to offer its customers a substantially wider range of technologies and services. Thermo Fisher’s gene modulation technologies complement GE’s established technologies for drug discovery research, and the Sera-Mag magnetic beads product line extends GE’s existing technologies in protein analysis and medical diagnostics. The complementary product offerings and strong strategic fit of the acquisitions will also enable GE Healthcare to expand and accelerate the development of new “end-to-end” technologies.

“Life sciences is one of our strongest and fastest-growing business areas, driven by the world’s demand for improved diagnostics and new, safer medicines. Combining GE’s engineering expertise with our capabilities in life sciences is already bringing great benefits to industry, research, and patients. This deal [...] will help us realize our vision of bringing better healthcare to more people at lower cost,” said John Dineen, president and CEO, GE Healthcare.

“We look forward to the HyClone cell culture and other businesses joining the GE family. They are a great fit with our key areas of focus, and bring exciting new technologies, enhanced manufacturing capabilities as well as a great group of talented people to help grow our business,” said Kieran Murphy, president and CEO of GE Healthcare’s life sciences division. “In addition to providing us with new approaches to drug discovery and biomedical research, this acquisition is a significant step forward for our customers in biopharmaceutical manufacturing. They will benefit immediately from an expanded range of “start-to-finish” technologies that will help them improve product yields and reduce time-to-market. By expanding our production facilities to three continents, we will be able to offer the biopharmaceutical industry greater confidence in the security of supply of cell culture media and sera.”

Related Links:
General Electric
GE Healthcare
Thermo Fisher Scientific


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Difference in DP103 (red) levels in a healthy person (left image) and a breast cancer patient (right image) (Photo courtesy of the National University of Singapore).

BP103 Cited as Breast Cancer Biomarker and Potential Treatment Target

Cancer researchers in Singapore have identified the DP103 oncogene in human breast cancers as a biomarker for the molecular processes that drive reappearance and metastasis of tumors following chemotherapy.... Read more

Drug Discovery

view channel
Image: (Left) Neurons in brains from people with autism do not undergo normal pruning during childhood and adolescence. The images show representative neurons from unaffected brains (left) and brains from autistic patients (right); the spines on the neurons indicate the location of synapses (Photo courtesy of Guomei Tang, PhD and Mark S. Sonders, PhD, Columbia University Medical Center).

Autistic Youngsters Found to Have Too Many Brain Synapses

Autistic children and adolescents have been shown to have an excess of brain synapses, and this is due to a slowdown in the normal brain “trimming” process during development, according to new findings.... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

Assessing Myeloma Progression Using Calcium Isotope Analysis

Scientists are revealing how an Earth science research principle can be used in biomedical situations to predict the development of disease. The researchers evaluated a new approach to detecting bone loss in cancer patients by using calcium isotope analysis to predict whether myeloma patients are at risk for developing... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.