Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Bruker and 3M Collaborate for MALDI Imaging for Cancer Research

By BiotechDaily International staff writers
Posted on 14 Jun 2013
Bruker Corp. (Billerica, MA, USA) reported that it has signed an exclusive patent license agreement with 3M Company (Maplewood, MN, USA), which allows Bruker to include 3M patented technology related to matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging.

The licensed 3M patents are directed to a technique for performing mass spectrometry analysis on proteins in tissue that has been preserved in paraffin. The technology enables researchers to study formalin-fixed, paraffin-embedded (FFPE) tissue for drug development and life-science research.

MALDI imaging has been increasingly utilized to analyze clinically pertinent tissues such as tumor biopsies. The molecular phenotypes visualized by MALDI imaging have been demonstrated to correlate with parameters such as disease status or patient outcome, and have been effectively applied to the categorization of tissue samples.

MALDI imaging was first developed for the analysis of fresh, frozen tissue sections, however, the analysis of preserved FFPE tissue sections is becoming increasingly important due to methodological enhancements. In the MALDI imaging community, it is widely accepted that a meaningful analysis of FFPE tissue requires a pretreatment called antigen-retrieval.
Dr. Sören-Oliver Deininger, market manager for MALDI imaging at Bruker, stated, “The interest in the analysis of FFPE tissue by MALDI imaging is increasing strongly. Bruker has developed innovative technology to make MALDI imaging viable in histopathology by the integration of virtual microscopy and the possibility to classify tissue based on the molecular phenotypes [class-imaging]. Our license agreement with 3M shows our ongoing commitment to the MALDI imaging field, and gives our customers the necessary freedom to conduct their research and advance the field.”

MALDI imaging is suited to analyze biomarkers in tissue samples. By enabling histologic correlation of molecular phenotypes and correlation of molecular signals to clinical endpoints, the technology is an effective application for cancer research. It directly images metabolites, peptides, proteins, lipids, and drugs in FFPE samples with no antibodies, probes, fluorescent dyes, or radiolabels needed.

However, analysis can be complex, tiresome, and difficult to interpret. Bruker has developed special software that supports the entire workflow, including statistical analysis, providing simple and automated interpretation and reporting of results. This new agreement with 3M supports the continued development and use of this important enabling application.


Related Links:

Bruker
3M Company



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.