Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Collaborative Program to Develop Treatment Options for Systemic Lupus Erythematosus

By BiotechDaily International staff writers
Posted on 11 Feb 2013
A collaborative agreement between an American biomedical research institute and a European pharmaceutical manufacturer will promote the development of antibodies for treatment of systemic lupus erythematosus (SLE).

SLE is a potentially fatal inflammatory, multisystemic, autoimmune disease of the connective tissue, characterized by fever, skin lesions, joint pain or arthritis, and anemia. The disease often affects the kidneys, spleen, heart, and various other organs. SLE occurs nine times more often in women than in men, especially in women in the childbearing years ages 15 to 35, and is more common in those of non-European descent. There is no cure for SLE, and the goal of treatment has been to control symptoms.

To promote development of treatments for SLE the pharmaceutical company Merck Serono (Darmstadt, Germany) will collaborate with the Feinstein Institute for Medical Research (Manhasset, NY, USA). Merck Serono, which is the biopharmaceutical division of Merck KGaA, discovers, develops, manufactures, and markets prescription medicines of both chemical and biological origin. The Feinstein Institute for Medical Research is the research branch of the North Shore-Long Island Jewish Health System. It maintains more than 800 scientists and investigators who are conducting research in oncology, immunology and inflammation, genetics, psychiatry, neurology, pediatrics, surgery, urology, obstetrics/gynecology, and many other specialties.

Under terms of the collaborative agreement, Merck Serono will fund a research program at the Feinstein Institute and be responsible for the development and commercialization of the antibodies resulting from the collaboration. The program will focus on the use of antibodies to inhibit the action of certain proteins responsible for inflammation in the pathogenesis of SLE.

“There is a very high unmet medical need for novel therapies to treat systemic lupus erythematosus. Over the last fifty years, only one new treatment option has been approved to treat the disease,” said Dr. Bernhard Kirschbaum, executive vice-president, head of global research and early development at Merck Serono. “The Feinstein Institute is at the forefront of translational research in inflammatory and autoimmune diseases and this is a rare opportunity for our researchers to collaborate with key experts in the field of systemic lupus erythematosus to develop alternative therapeutic approaches, and further strengthen our research capabilities in the field of immunology.”

“We are delighted to collaborate with Merck Serono to develop therapeutics for lupus with the potential to treat the underlying causes of the disease,” said Dr. Betty Diamond, head of the center for autoimmune and musculoskeletal diseases at the Feinstein Institute. “The resources of Merck Serono will be an important addition to our efforts to provide new antibody therapeutics targeted at inflammatory processes. These mechanisms are critical to solving the problem of lupus and many other autoimmune diseases.”

Related Links:
Merck Serono
Feinstein Institute for Medical Research




Channels

Genomics/Proteomics

view channel
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).

Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form... Read more

Drug Discovery

view channel
Image: Neurons cultivated with the help of ordinary skin cells create a three-dimensional network on a chip (Photo courtesy of Dr. Edinson Lucumi Moreno, University of Luxembourg).

Bioreactor Culture of Dopamine-Producing Neurons May Lead to Personalized Treatment of Parkinson's Disease

By developing a procedure for transforming skin cells into functional dopamine-producing neurons, researchers have taken an important first step towards the development of personalized treatment of Parkinson's... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.