Features | Partner Sites | Information | LinkXpress
Sign In
JIB
BioConferenceLive
GLOBETECH PUBLISHING

New Technology Reduces Drug Development Costs

By BiotechDaily International staff writers
Posted on 04 Feb 2013
New technology based on cytochrome P450s (CYPs) proteins will speed up and reduce the cost of the development of new drugs and medicines.

The CYP super-family is a large and diverse group of enzymes that catalyze the oxidation of organic substances. The substrates of CYP enzymes include metabolic intermediates such as lipids and steroidal hormones, as well as xenobiotic substances such as drugs and other toxic chemicals. CYPs are the major enzymes involved in drug metabolism and bioactivation, accounting for about 75% of the total number of different metabolic reactions. The proteins are commercially available for use by companies involved in the discovery of new drugs, but are problematic as they must be transported and stored at temperatures as low as minus 80 degrees Celsius.

Researchers at De Montfort University (DMU; Leicester, United Kingdom) therefore developed a method that allows for CYPs to be shipped and handled at room temperature, eliminating the need for a cold chain, reducing costs, and making CYPs use in testing new drugs much quicker and easier. For the venture, DMU joined forces with life sciences commercialization company Ithaka Life Sciences (Ithaka, Cambridge, United Kingdom) to jointly establish a new company, which will be called CYP Design Limited (CDL, Cambridge, United Kingdom).

“The development of new drugs can be very time-consuming and costly. It can take up to 14 years from the initial idea and cost hundreds of millions of pounds. Thousands of potential new drugs are tested initially for every one successfully brought to market,” said Professor Bob Chaudhuri, PhD, who developed the new technology. “My group's development is designed to provide the proteins that are needed for this work in a cost effective and convenient format.”

“The technology that Professor Chaudhuri has been developing can have a significant impact on the timescales and costs involved in the early stages of drug discovery,” said Bill Primrose, PhD, CEO of CDL. “CYPs are currently transported on dry ice, at around minus 80 degrees Celsius, and are stored as cold as possible in the customer's laboratory until they are needed. His new technology eliminates the need for a cold chain, making it easier to manufacture and ship the proteins, and making them much more convenient for the customer to use.”

CYP-mediated transformations of drug candidates are of crucial importance in the pharmaceutical industry, with multiple roles. Oxidation by CYPs can lead to toxic products, but, on the other hand, local activation of anticancer drugs leads to lethal intracellular toxins at the site of the tumor. The metabolic clearance of most drugs depends on CYPs, and they have been implicated in a large number of drug interactions. Since drug interactions can result in fatalities, drug candidates with CYPs must be taken into account if the expensive and time-consuming development of active compounds with hidden toxic effects is to be avoided.

Related Links:

De Montfort University
Ithaka Life Sciences




comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Blocking the activity of HSP101 may imprison the malaria parasite inside its protective vacuole within the red blood cell. In the electron micrograph, the malaria parasites appear in blue and uninfected red blood cells are shown in red (Photo courtesy of the [US] National Institute of Allergy and Infectious Diseases).

Heat Shock Protein Plays Critical Role in Malaria Parasite Protein Trafficking

A pair of recent papers described the molecular operators that enable the malaria parasite Plasmodium falciparum to export a large variety of proteins across the parasitophorous vacuolar membrane (PVM)... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: A one-year-old baby sits in a brain scanner, called magnetoencephalography (MEG)—a noninvasive approach to measuring brain activity. The baby listens to speech sounds such as “da” and “ta” played over headphones while researchers record her brain responses (Photo courtesy of the Institute for Learning & Brain Sciences at the University of Washington).

Brain Scanner Shows Infants’ Brains Rehearse Speech Sounds Months Before Their First Words

New research in 7- and 11-month-old infants revealed that speech sounds stimulate brain regions that coordinate and plan motor movements for speech. The new study suggests that babies’ brains begin establishing... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.