Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Cell Culture Market Fueled by Biologics and Stem Cell Research

By BiotechDaily International staff writers
Posted on 20 Nov 2012
Cell culture is becoming the next big thing in pharma research, as laboratories rush to meet demand for stem cell and biologics.

A new report published by healthcare market research company GBI Research (New York, NY, USA) examined cell cultures, which entails the isolation of plant or animal cells, for their growth in an artificial environment where conditions such as temperature and pressure are all controlled.

Manufacturing of biopharmaceuticals involves cell culture methods, and the growing trend for biologics will drive the demand for cell culture processing. Biopharmaceuticals are target-specific molecules that are less toxic and more effective than small molecular compounds, and are in high demand for the treatment of cancer, arthritis, and diabetes, attracting the focus of many major pharmaceutical companies.

Because of the novel method of development, biopharmaceutical products are not easy to be synthesized by generic forms. R&D in the sector is principally focused on developing innovative processes of action, and increasing availability to newer treatments to produce potential cures and improve the quality of life for individuals suffering from various disorders. This focus helps in generating better treatment alternatives and earning larger profits for pharmaceutical and biotechnologic companies. The development and manufacturing of these biologic products is directly related to the growing demand for cell culture.

Stem cell research also has tremendous possibilities for cell culture applications. Cell culture techniques offer standardized production and propagation of highly purified stem cells and their differentiated progeny. Traditional therapies manage the disease symptoms, whereas stem cell therapies treat the root of the disorder, and from a commercial standpoint, this lack of effective treatments in established therapies makes stem cell research a potential goldmine. In the past few years, stem cell research has gained more clout in the cancer research arena, although the technique still faces many unresolved risks including the transmission of infectious agents and the uncontrolled proliferation of transplanted cells.

The cell culture market has more than 90% of its products manufactured by a small number of players, including Sigma-Aldrich Corp., EMD Millipore, Life Technologies Corp., and Thermo Fisher Scientific, Inc. A considerable number of small players are also entering into the market, particularly in emerging countries. However, rigid industry regulations restrict the pace at which these companies can advance. The cell culture process requires meticulous handling, with any changes affecting the safety and effectiveness of the final product. Consequently, the processes utilized for cell culturing are constrained by strict controls, which slow down development and act as a bottleneck to progression in cell culture processing techniques.

The global cell culture market was worth USD 3.4 billion in 2011, and it is expected to grow at a compound annual growth rate (CAGR) of 9.3% between 2011 and 2018 to reach USD 6.3 billion in 2018.

GBI Research is a provider of business intelligence reports, providing data and forecasts based on the insights of key industry leaders.

Related Links:

GBI Research




comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.