Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Biotech Partners to Focus on Drugs Targeting G-Protein Coupled Receptors

By BiotechDaily International staff writers
Posted on 05 Nov 2012
An agreement between the French company Domain Therapeutics (Illkirch-Strasbourg, France) and Japanese Ono Pharmaceutical Co., Ltd. (Osaka, Japan) is designed to promote the discovery of small molecules targeting G-Protein Coupled Receptors (GPCRs).

GPCRs are not only the largest protein family in the human genome but also the single biggest target for therapeutic agents. Ligand binding to these receptors activates their associated G protein, which then activates an effector enzyme to generate an intracellular second messenger. All GPCRs contain seven membrane-spanning regions with their N-terminal segment on the external face and their C-terminal segment on the cytosolic face of the plasma membrane. This large receptor family includes light-activated receptors (rhodopsins) in the eye and thousands of odorant receptors in the nose, as well as numerous receptors for various hormones and neurotransmitters. Although these receptors are activated by different ligands and may mediate different cellular responses, they all mediate a similar signaling pathway.

Under the terms of the collaborative agreement for development of GPRC-directed drugs, Ono Pharmaceutical will provide Domain Therapeutics with an upfront payment and provide research funding for collaborative research programs and success-based milestones. Domain Therapeutics will receive royalties on sales of the products.

Domain Therapeutics will apply its proprietary DTect-All GPCR drug discovery platform and utilize its expertise in GPCR medicinal chemistry and pharmacology to design and optimize small molecules into drug candidates having activity against GPCRs selected by Ono Pharmaceutical.

Ono Pharmaceutical will then have worldwide exclusive rights to develop and commercialize any pharmaceutical product arising out of the drug discovery collaboration.

“This collaboration with Ono further confirms the value of our differentiated drug discovery process and of our expertise in the field of GPCRs. It constitutes an important step towards the objective of Domain Therapeutics to collaborate with pharma partners on integrated projects, from target to drug candidate,” said Pascal Neuville, CEO of Domain Therapeutics. “We are delighted to be collaborating with Ono, which is recognized as a leading Japanese pharmaceutical company.”

Dr. Kazuhito Kawabata, executive director of discovery and research at Ono Pharmaceutical, said, “We highly appreciate Domain Therapeutics’ DTect-All technology and strongly believe that the company is the partner of choice to identify GPCR drugs. This collaboration will strengthen Ono’s drug discovery capability in research areas of Ono’s expertise with significant unmet medical needs. We are expecting that innovative drugs will be created through this collaboration.”

Related Links:

Ono Pharmaceutical
Domain Therapeutics


comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.