Features Partner Sites Information LinkXpress
Sign In
Demo Company

Biotech Partners to Focus on Drugs Targeting G-Protein Coupled Receptors

By BiotechDaily International staff writers
Posted on 05 Nov 2012
Print article
An agreement between the French company Domain Therapeutics (Illkirch-Strasbourg, France) and Japanese Ono Pharmaceutical Co., Ltd. (Osaka, Japan) is designed to promote the discovery of small molecules targeting G-Protein Coupled Receptors (GPCRs).

GPCRs are not only the largest protein family in the human genome but also the single biggest target for therapeutic agents. Ligand binding to these receptors activates their associated G protein, which then activates an effector enzyme to generate an intracellular second messenger. All GPCRs contain seven membrane-spanning regions with their N-terminal segment on the external face and their C-terminal segment on the cytosolic face of the plasma membrane. This large receptor family includes light-activated receptors (rhodopsins) in the eye and thousands of odorant receptors in the nose, as well as numerous receptors for various hormones and neurotransmitters. Although these receptors are activated by different ligands and may mediate different cellular responses, they all mediate a similar signaling pathway.

Under the terms of the collaborative agreement for development of GPRC-directed drugs, Ono Pharmaceutical will provide Domain Therapeutics with an upfront payment and provide research funding for collaborative research programs and success-based milestones. Domain Therapeutics will receive royalties on sales of the products.

Domain Therapeutics will apply its proprietary DTect-All GPCR drug discovery platform and utilize its expertise in GPCR medicinal chemistry and pharmacology to design and optimize small molecules into drug candidates having activity against GPCRs selected by Ono Pharmaceutical.

Ono Pharmaceutical will then have worldwide exclusive rights to develop and commercialize any pharmaceutical product arising out of the drug discovery collaboration.

“This collaboration with Ono further confirms the value of our differentiated drug discovery process and of our expertise in the field of GPCRs. It constitutes an important step towards the objective of Domain Therapeutics to collaborate with pharma partners on integrated projects, from target to drug candidate,” said Pascal Neuville, CEO of Domain Therapeutics. “We are delighted to be collaborating with Ono, which is recognized as a leading Japanese pharmaceutical company.”

Dr. Kazuhito Kawabata, executive director of discovery and research at Ono Pharmaceutical, said, “We highly appreciate Domain Therapeutics’ DTect-All technology and strongly believe that the company is the partner of choice to identify GPCR drugs. This collaboration will strengthen Ono’s drug discovery capability in research areas of Ono’s expertise with significant unmet medical needs. We are expecting that innovative drugs will be created through this collaboration.”

Related Links:

Ono Pharmaceutical
Domain Therapeutics

Print article



view channel
Image: Left: Green actin fibers create architecture of the cell. Right: With cytochalasin D added, actin fibers disband and reform in the nuclei (Photo courtesy of the University of North Carolina).

Actin in the Nucleus Triggers a Process That Directs Stem Cells to Mature into Bone

A team of cell biologists has discovered why treatment of mesenchymal stem cells (MSCs) with the mycotoxin cytochalasin D directs them to mature into bone cells (osteoblasts) rather than into fat cells... Read more


view channel

Molecular Light Shed on “Dark” Cellular Receptors

Scientists have created a new research tool to help find homes for orphan cell-surface receptors, toward better understanding of cell signaling, developing new therapeutics, and determining causes of drug side-effects. The approach may be broadly useful for discovering interactions of orphan receptors with endogenous, naturally... Read more

Lab Technologies

view channel
Image: The new ambr 15 fermentation micro-bioreactor system was designed to enhance microbial strain screening applications (Photo courtesy of Sartorius Stedim Biotech).

New Bioreactor System Streamlines Strain Screening and Culture

Biotechnology laboratories working with bacterial cultures will benefit from a new automated micro bioreactor system that was designed to enhance microbial strain screening processes. The Sartorius... Read more
Copyright © 2000-2015 Globetech Media. All rights reserved.