We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
INTEGRA BIOSCIENCES AG

Download Mobile App




Broadly Neutralizing Antibodies Protect Mice from Alphavirus Infection

By LabMedica International staff writers
Posted on 24 Nov 2015
Print article
Image: Cryoelectron micrograph reconstruction of the Chikungunya virus (Photo courtesy of the Washington University School of Medicine).
Image: Cryoelectron micrograph reconstruction of the Chikungunya virus (Photo courtesy of the Washington University School of Medicine).
While screening a panel of mouse and human monoclonal antibodies (MAbs) that had been raised against Chikungunya virus, researchers identified several with inhibitory activity against multiple other arthritogenic alphaviruses.

The arthritogenic alphaviruses, which include Chikungunya virus, Mayaro virus, and O’nyong-nyong virus among others, characteristically cause symptoms of fever followed by arthritis-like joint pain. Currently there is no vaccine or treatment for chikungunya or the other alphaviruses.

Investigators at the Washington University School of Medicine (St. Louis, MO, USA) screened 60 neutralizing mouse and human anti-chikungunya monoclonal antibodies and determined that 10 also recognized three or more different arthritogenic alphaviruses. Passive transfer of these "broadly neutralizing" MAbs protected mice against infection by chikungunya, Mayaro, and O’nyong’nyong alphaviruses.

The investigators reported in the November 6, 2015, online edition of the journal Cell that the broadly neutralizing MAbs blocked multiple steps in the viral lifecycle, including entry into host cells and egress. The antibodies were shown to bind to a conserved epitope on the B domain of the viral E2 glycoprotein. The cryoelectron microscopy structure of a Fab fragment bound to the chikungunya E2 B domain determined at 1.6 nanometer resolution showed that antibody binding caused the repositioning of the A domain of E2 so that it was able to cross-link neighboring spikes. This change in the three-dimensional structure of the proteins on the surface of the virus explained how the antibodies were able to prevent viral infection.

“There is a lot of emphasis on identifying and understanding broadly neutralizing antibodies for other viruses - HIV, Hepatitis C virus, Dengue virus, influenza virus - but most of those antibodies neutralize different strains of the same virus,” said senior author Dr. Michael Diamond, professor of medicine at the Washington University School of Medicine. “What we have identified here are antibodies that actually neutralize several different alphaviruses.”

“We have more work to do but are encouraged that targeting this epitope could be a viable strategy for developing vaccines or treatments against chikungunya and other related viruses that cause significant disease worldwide,” said Dr. Diamond. “If you can make an antibody response against this region, you may be able to protect against many viruses in the family. Our group is making proteins now that focus on this epitope, and we are planning to start immunizing animals soon to see if we generate the right kinds of antibodies.”

Related Links:

Washington University School of Medicine


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
One Step HbA1c Measuring System
GREENCARE A1c
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: Reaching speeds up to 6,000 RPM, this centrifuge forms the basis for a new type of inexpensive, POC biomedical test (Photo courtesy of Duke University)

POC Biomedical Test Spins Water Droplet Using Sound Waves for Cancer Detection

Exosomes, tiny cellular bioparticles carrying a specific set of proteins, lipids, and genetic materials, play a crucial role in cell communication and hold promise for non-invasive diagnostics.... Read more

Molecular Diagnostics

view channel
Image: MOF materials efficiently enrich cfDNA and cfRNA in blood through simple operational process (Photo courtesy of Science China Press)

Blood Circulating Nucleic Acid Enrichment Technique Enables Non-Invasive Liver Cancer Diagnosis

The ability to diagnose diseases early can significantly enhance the effectiveness of clinical treatments and improve survival rates. One promising approach for non-invasive early diagnosis is the use... Read more

Hematology

view channel
Image: The low-cost portable device rapidly identifies chemotherapy patients at risk of sepsis (Photo courtesy of 52North Health)

POC Finger-Prick Blood Test Determines Risk of Neutropenic Sepsis in Patients Undergoing Chemotherapy

Neutropenia, a decrease in neutrophils (a type of white blood cell crucial for fighting infections), is a frequent side effect of certain cancer treatments. This condition elevates the risk of infections,... Read more

Pathology

view channel
Image: The OvaCis Rapid Test discriminates benign from malignant epithelial ovarian cysts (Photo courtesy of INEX)

Intra-Operative POC Device Distinguishes Between Benign and Malignant Ovarian Cysts within 15 Minutes

Ovarian cysts represent a significant health issue for women globally, with up to 10% experiencing this condition at some point in their lives. These cysts form when fluid collects within a thin membrane... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.