Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

Small-Scale Incubator Microscope Designed to Study Cells in Time Lapse

By BiotechDaily International staff writers
Posted on 11 Jun 2014
Image: No bigger than a soda can, the small-scale incubator microscope is a space-saving and cost effective solution for time-lapse observation of cell cultures (Photo courtesy of Fraunhofer IBMT).
Image: No bigger than a soda can, the small-scale incubator microscope is a space-saving and cost effective solution for time-lapse observation of cell cultures (Photo courtesy of Fraunhofer IBMT).
German scientists have now devised innovative technology that combines the functions of both incubators and microscopes in a compact small-scale system. It is ideally suited for time-lapse study over a number of weeks and for automatic observation of cell cultures. The incubator microscope is no bigger than a soda can, and costs 30 times less than purchasing an incubator and a microscope separately.

Similar to humans, cells require nutrients to survive. Cultivating human and animal cells requires parameters such as temperature and humidity to be specified with absolute precision and maintained at an even level over long periods of time. Time-lapse observation over a period of some weeks can be particularly beneficial, since a lot occurs in that time in terms of cell reproduction and differentiation. Until now, the typical way to make these sorts of observations has been to use small incubators in combination with traditional microscopes. This takes up about one square meter of space, making operating several such systems alongside each other an inefficient process. There is a need for innovative solutions that will substantially reduce the space needed and the costs involved without compromising the quality of the cultivation and of the microscope images recorded.

The small-scale incubator microscope system can be used for time-lapse observation of cell cultures as well as to collect fluorescent images at different wavelengths. It includes a small incubation chamber and control electronics to provide defined cell culture parameters. Cells grow on the floor of the miniaturized incubation chamber on a thin, replaceable glass plate and are supplied with a constant stream of nutrients. The only parameters that need to be kept constant within the incubator are the temperature and the nutrient supply flow rate. The small-scale incubator microscope allows for many units to be operated in parallel in a very compact space. Moreover, in spite of its space-saving design, the system generates images that are almost as good as those of the bigger microscopes.

Prototype versions are now in use in a range of research projects. “The system is stable and can be used for time-lapse observation spanning several weeks,” commented Dr. Thomas Velten, head of the biomedical microsystems department at the Fraunhofer Institute for Biomedical Engineering IBMT (Berlin, Germany). The device continuously gathers data and saves them to a computer. Images can be accessed at any time and analyzed using the appropriate image processing software.

“Our customers get a biomedical analysis tool of the highest quality—well priced, space-saving, and tailored to their needs,” concluded Dr. Velten. The incubator microscope is suited to a wide variety of applications, for instance examining the reaction of cells to nanoparticles or toxic agents in the environment. Another current application is stem cell research. “The system is compact, mobile, extremely efficient, and fully automatic in operation.”

Related Links:

The Fraunhofer Institute for Biomedical Engineering IBMT



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.