We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Small-Scale Incubator Microscope Designed to Study Cells in Time Lapse

By LabMedica International staff writers
Posted on 11 Jun 2014
Print article
Image: No bigger than a soda can, the small-scale incubator microscope is a space-saving and cost effective solution for time-lapse observation of cell cultures (Photo courtesy of Fraunhofer IBMT).
Image: No bigger than a soda can, the small-scale incubator microscope is a space-saving and cost effective solution for time-lapse observation of cell cultures (Photo courtesy of Fraunhofer IBMT).
German scientists have now devised innovative technology that combines the functions of both incubators and microscopes in a compact small-scale system. It is ideally suited for time-lapse study over a number of weeks and for automatic observation of cell cultures. The incubator microscope is no bigger than a soda can, and costs 30 times less than purchasing an incubator and a microscope separately.

Similar to humans, cells require nutrients to survive. Cultivating human and animal cells requires parameters such as temperature and humidity to be specified with absolute precision and maintained at an even level over long periods of time. Time-lapse observation over a period of some weeks can be particularly beneficial, since a lot occurs in that time in terms of cell reproduction and differentiation. Until now, the typical way to make these sorts of observations has been to use small incubators in combination with traditional microscopes. This takes up about one square meter of space, making operating several such systems alongside each other an inefficient process. There is a need for innovative solutions that will substantially reduce the space needed and the costs involved without compromising the quality of the cultivation and of the microscope images recorded.

The small-scale incubator microscope system can be used for time-lapse observation of cell cultures as well as to collect fluorescent images at different wavelengths. It includes a small incubation chamber and control electronics to provide defined cell culture parameters. Cells grow on the floor of the miniaturized incubation chamber on a thin, replaceable glass plate and are supplied with a constant stream of nutrients. The only parameters that need to be kept constant within the incubator are the temperature and the nutrient supply flow rate. The small-scale incubator microscope allows for many units to be operated in parallel in a very compact space. Moreover, in spite of its space-saving design, the system generates images that are almost as good as those of the bigger microscopes.

Prototype versions are now in use in a range of research projects. “The system is stable and can be used for time-lapse observation spanning several weeks,” commented Dr. Thomas Velten, head of the biomedical microsystems department at the Fraunhofer Institute for Biomedical Engineering IBMT (Berlin, Germany). The device continuously gathers data and saves them to a computer. Images can be accessed at any time and analyzed using the appropriate image processing software.

“Our customers get a biomedical analysis tool of the highest quality—well priced, space-saving, and tailored to their needs,” concluded Dr. Velten. The incubator microscope is suited to a wide variety of applications, for instance examining the reaction of cells to nanoparticles or toxic agents in the environment. Another current application is stem cell research. “The system is compact, mobile, extremely efficient, and fully automatic in operation.”

Related Links:

The Fraunhofer Institute for Biomedical Engineering IBMT


Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Complement 3 (C3) Test
GPP-100 C3 Kit
New
Gold Member
Magnetic Bead Separation Modules
MAG and HEATMAG

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Liquid biopsy could detect and monitor aggressive small cell lung cancer (Photo courtesy of Shutterstock)

Blood-Based Test Detects and Monitors Aggressive Small Cell Lung Cancer

Small cell lung cancer (SCLC) is a highly aggressive type of cancer known for its ability to metastasize. The behavior of tumors is largely governed by which genes are turned on, or transcribed, irrespective... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: The groundbreaking treatment approach has shown promise in hard-to-treat cancers (Photo courtesy of 123RF)

Genetic Testing Combined With Personalized Drug Screening On Tumor Samples to Revolutionize Cancer Treatment

Cancer treatment typically adheres to a standard of care—established, statistically validated regimens that are effective for the majority of patients. However, the disease’s inherent variability means... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.