Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Erythroferrone Frees Up Iron for Red Blood Cell Production by Inhibiting Hepcidin

By BiotechDaily International staff writers
Posted on 11 Jun 2014
Image: A microscopic image of erythroblasts which are the bone marrow cells that secrete erythroferrone (Photo courtesy of UCLA - University of California, Los Angeles).
Image: A microscopic image of erythroblasts which are the bone marrow cells that secrete erythroferrone (Photo courtesy of UCLA - University of California, Los Angeles).
A recent paper outlined a novel biochemical pathway in the bone marrow that regulates the increase production of red blood cells that are required following blood loss due to hemorrhage or anemia.

Investigators at the University of California, Los Angeles (UCLA; USA) have been studying the newly discovered hormone erythroferrone (ERFE) and its affect on another hormone, hepcidin.

Hepcidin is a peptide hormone encoded by the HAMP gene and produced primarily by the liver. This hormone appears to be the master regulator of iron homeostasis in humans and other mammals. Hepcidin functions to inhibit iron transport across the gut mucosa, thereby preventing excess iron absorption and maintaining normal iron levels within the body. Hepcidin also inhibits transport of iron out of macrophages (where iron is stored). Therefore, anemia can develop in states of high hepcidin levels, where serum iron levels drop because iron is trapped inside macrophages. The question being asked in the current study was how hepcidin was regulated to release iron when a sudden increase in red blood cell synthesis was called for.

For this study the investigators genetically engineered a line of mice that produced exceptionally low levels of ERFE. They found that these mice failed to suppress hepcidin rapidly after hemorrhage and exhibited a delay in recovery from blood loss. Results from a different set of experiments revealed that ERFE expression was greatly increased in Hbbth3/+ mice with thalassemia intermedia, where it contributed to the suppression of hepcidin and the systemic iron overload characteristic of this disease.

"If there is too little iron, it causes anemia. If there is too much iron, the iron overload accumulates in the liver and organs, where it is toxic and causes damage," said senior author Dr. Tomas Ganz, professor of medicine and pathology at the UCLA. "Modulating the activity of erythroferrone could be a viable strategy for the treatment of iron disorders of both overabundance and scarcity."

The description of ERFE activity was published in the June 1, 2014, online edition of the journal Nature Genetics.

Related Links:

University of California, Los Angeles



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Alternative splicing produces two protein isoforms (Photo courtesy of Wikimedia Commons).

Key Regulator of Cancer-Inducing Alternative Splicing Identified

Cancer researchers have identified the splicing factor RBM4 (RNA-binding protein 4) as a key determinant in processes that prevent tumor development and spread. RBM4 is known to be crucial to gene splicing... Read more

Drug Discovery

view channel

Ibuprofen May Restore Immune Function in Older Individuals

New research suggests that macrophages from the lungs of old mice respond differently to infections than those of young mice, and ibuprofen given to the mice reversed these changes. New research using lab mice suggests that the solution to more youthful immune function might already be a common over-the-counter pain reliever.... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.