Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

Erythroferrone Frees Up Iron for Red Blood Cell Production by Inhibiting Hepcidin

By BiotechDaily International staff writers
Posted on 11 Jun 2014
Image: A microscopic image of erythroblasts which are the bone marrow cells that secrete erythroferrone (Photo courtesy of UCLA - University of California, Los Angeles).
Image: A microscopic image of erythroblasts which are the bone marrow cells that secrete erythroferrone (Photo courtesy of UCLA - University of California, Los Angeles).
A recent paper outlined a novel biochemical pathway in the bone marrow that regulates the increase production of red blood cells that are required following blood loss due to hemorrhage or anemia.

Investigators at the University of California, Los Angeles (UCLA; USA) have been studying the newly discovered hormone erythroferrone (ERFE) and its affect on another hormone, hepcidin.

Hepcidin is a peptide hormone encoded by the HAMP gene and produced primarily by the liver. This hormone appears to be the master regulator of iron homeostasis in humans and other mammals. Hepcidin functions to inhibit iron transport across the gut mucosa, thereby preventing excess iron absorption and maintaining normal iron levels within the body. Hepcidin also inhibits transport of iron out of macrophages (where iron is stored). Therefore, anemia can develop in states of high hepcidin levels, where serum iron levels drop because iron is trapped inside macrophages. The question being asked in the current study was how hepcidin was regulated to release iron when a sudden increase in red blood cell synthesis was called for.

For this study the investigators genetically engineered a line of mice that produced exceptionally low levels of ERFE. They found that these mice failed to suppress hepcidin rapidly after hemorrhage and exhibited a delay in recovery from blood loss. Results from a different set of experiments revealed that ERFE expression was greatly increased in Hbbth3/+ mice with thalassemia intermedia, where it contributed to the suppression of hepcidin and the systemic iron overload characteristic of this disease.

"If there is too little iron, it causes anemia. If there is too much iron, the iron overload accumulates in the liver and organs, where it is toxic and causes damage," said senior author Dr. Tomas Ganz, professor of medicine and pathology at the UCLA. "Modulating the activity of erythroferrone could be a viable strategy for the treatment of iron disorders of both overabundance and scarcity."

The description of ERFE activity was published in the June 1, 2014, online edition of the journal Nature Genetics.

Related Links:

University of California, Los Angeles



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.