Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

Unanticipated Link Found Between Cell Suicide and Long Life

By BiotechDaily International staff writers
Posted on 28 May 2014
Image: Caenorhabditis elegans nematode (roundworm) (Photo courtesy of McGill University).
Image: Caenorhabditis elegans nematode (roundworm) (Photo courtesy of McGill University).
Many health professionals believe that free radicals, the occasionally toxic molecules generated by the body as it processes oxygen, are the cause behind aging. However, a number of studies recently have generated evidence that the contrary may be true.

Researchers from McGill University (Montreal, QC, Canada) have taken this finding further by showing how free radicals promote longevity in a research model organism, the roundworm Caenorhabditis elegans. Unexpectedly, the scientists discovered that free radicals (i.e., oxidants) act on a molecular mechanism that, in other surroundings, instructs a cell to kill itself.

Apoptosis is a process by which injured cells commit suicide in a range of circumstances: to avoid inducing autoimmune disease, to avoid becoming cancerous, or to kill off viruses that have invaded the cell. The key molecular mechanism by which this occurs is well conserved in all animals, but was first discovered in C. elegans—a finding that earned a Nobel Prize.

The McGill University researchers discovered that this same mechanism, when stimulated in the correct manner by free radicals, in reality strengthens the cell’s defenses and increases its longevity. Their findings were published online May 8, 2014, in the journal Cell. “People believe that free radicals are damaging and cause aging, but the so-called ‘free radical theory of aging’ is incorrect,” said Siegfried Hekimi, a professor in McGill’s department of biology, and senior author of the study. “We have turned this theory on its head by proving that free radical production increases during aging because free radicals actually combat—not cause—aging. In fact, in our model organism we can elevate free radical generation and thus induce a substantially longer life.”

The findings have significant ramifications. “Showing the actual molecular mechanisms by which free radicals can have a pro-longevity effect provides strong new evidence of their beneficial effects as signaling molecules,” Prof. Hekimi said. “It also means that apoptosis signaling can be used to stimulate mechanisms that slow down aging. Since the mechanism of apoptosis has been extensively studied in people, because of its medical importance in immunity and in cancer, a lot of pharmacological tools already exist to manipulate apoptotic signaling. But that doesn’t mean it will be easy.”

Triggering pro-longevity apoptotic signaling could be especially critical in neurodegenerative disorders, according to Prof. Hekimi. “In the brain the apoptotic signaling might be particularly tilted toward increasing the stress resistance of damaged cells rather than killing them. That’s because it is harder to replace dead neurons than other kinds of cells, partly because of the complexity of the connections between neurons.”

Related Links:

McGill University



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Microcomputed tomography images (top) and histology images (bottom) of the knees of mice fed a very high fat diet containing omega-3 fatty acid supplement (left) or only omega-6 fatty acids (right) after a knee injury. The omega-6 diet showed abnormal bone remodeling and calcified tissue formation in the joint (white arrow). The omega-6 diet also showed significant loss of cartilage (red staining, yellow arrowhead) and increased joint inflammation (Photo courtesy of Duke University).

Dietary Omega-3 Fatty Acids Moderate Severity of Osteoarthritis in a Mouse Model

Researchers working with an osteoarthritis (OA) obese mouse model found that the fat content of the animals' diet contributed more to the development or arrest of OA than did body weight.... Read more

Drug Discovery

view channel
Image: Molecular rendering of the crystal structure of parkin (Photo courtesy of Wikimedia Commons).

Cinnamon Feeding Blocks Development of Parkinson's Disease in Mouse Model

A team of neurological researchers has identified a molecular mechanism by which cinnamon acts to protect neurons from damage caused by Parkinson's disease (PD) in a mouse model of the syndrome.... Read more

Therapeutics

view channel

Vaccine Being Developed for Heart Disease Close to Reality

The world’s first vaccine for heart disease is becoming a possibility with researchers demonstrating significant arterial plaque reduction in concept testing in mice. Klaus Ley, MD, from the La Jolla Institute for Allergy and Immunology (LA Jolla, CA, USA), and a vascular immunology specialist, is leading the vaccine... Read more

Business

view channel

A Surge in IPOs Revitalize Investments for the Global Pharma and Biotech

Anti-infective drugs, oncology, and pharmaceutical contract laboratories attract the most investment up to now. The intensified private equity and venture capital (PEVC) deal activity in the global healthcare industry during the recession years, 2008–2010, witnessed a waning post-2010. However, the decline in deals... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.