Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING
JIB

New Technique Developed for Species-Level Identification of Live Gram-Negative Bacteria

By BiotechDaily International staff writers
Posted on 04 Feb 2014
A new method has now been developed that specifically detects and identifies live Legionella pneumophila in aqueous samples much more quickly than conventional methods, enabling more effective monitoring to prevent epidemics.

Legionella pneumophila proliferates in systems of standing water between 25–50 °C, such as in fountains, boilers, reservoirs, whirlpool tubs, and intermittently used water pipes. Although drinking the contaminated water poses no risk in itself, inhaling droplets often leads to severe lung infections, with a relatively high fatality rate. Frequent monitoring of water samples is necessary to prevent epidemics, but the traditional culture-based method takes several days.

Prof. Sam Dukan, Prof. Boris Vauzeilles, and their team at the multiple institutes of The National Centre for Scientific Research, France (CNRS) developed the new method that specifically identifies live Legionella pneumophila within 1 day. As a gram-negative bacterium, the Legionella cell wall is made up of a species-specific lipopolysaccharide. For the new test, samples are exposed to an azide(N3)-modified precursor compound that only Legionella pneumophila specifically incorporates into its cell wall saccharide units. The azide groups can then be used to bind various (e.g., fluorescent marker) detection probes to the cell surface for detection and identification of the pathogen.

This new technique, described by Mas Pons J., et al. in the journal Angewandte Chemie (International Edition), January 27, 2014, provides easy, relatively rapid, selective detection of a single species of live bacteria, and is the first reported metabolic lipopolysaccharide labeling using a species-specific saccharide for this purpose.

Related Links:

CNRS - Centre national de la recherche scientifique



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.