Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA

New Technique Developed for Species-Level Identification of Live Gram-Negative Bacteria

By BiotechDaily International staff writers
Posted on 04 Feb 2014
A new method has now been developed that specifically detects and identifies live Legionella pneumophila in aqueous samples much more quickly than conventional methods, enabling more effective monitoring to prevent epidemics.

Legionella pneumophila proliferates in systems of standing water between 25–50 °C, such as in fountains, boilers, reservoirs, whirlpool tubs, and intermittently used water pipes. Although drinking the contaminated water poses no risk in itself, inhaling droplets often leads to severe lung infections, with a relatively high fatality rate. Frequent monitoring of water samples is necessary to prevent epidemics, but the traditional culture-based method takes several days.

Prof. Sam Dukan, Prof. Boris Vauzeilles, and their team at the multiple institutes of The National Centre for Scientific Research, France (CNRS) developed the new method that specifically identifies live Legionella pneumophila within 1 day. As a gram-negative bacterium, the Legionella cell wall is made up of a species-specific lipopolysaccharide. For the new test, samples are exposed to an azide(N3)-modified precursor compound that only Legionella pneumophila specifically incorporates into its cell wall saccharide units. The azide groups can then be used to bind various (e.g., fluorescent marker) detection probes to the cell surface for detection and identification of the pathogen.

This new technique, described by Mas Pons J., et al. in the journal Angewandte Chemie (International Edition), January 27, 2014, provides easy, relatively rapid, selective detection of a single species of live bacteria, and is the first reported metabolic lipopolysaccharide labeling using a species-specific saccharide for this purpose.

Related Links:

CNRS - Centre national de la recherche scientifique



Channels

Genomics/Proteomics

view channel
Image: Transmission electron micrograph of norovirus particles in feces (Photo courtesy of Wikimedia Commons).

Norovirus Interacts with Gut Bacteria to Establish a Persistent Infection That Can Be Blocked by Interferon Lambda

A team of molecular microbiologists and virologists has found that norovirus requires an intimate interaction with certain gut bacteria to establish a persistent infection, and that the infective process... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Therapeutics

view channel
Image: Cancer cells infected with tumor-targeted oncolytic virus (red). Green indicates alpha-tubulin, a cell skeleton protein. Blue is DNA in the cancer cell nuclei (Photo courtesy of Dr. Rathi Gangeswaran, Bart’s Cancer Institute).

Innovative “Viro-Immunotherapy” Designed to Kill Breast Cancer Cells

A leading scientist has devised a new treatment that employs viruses to kill breast cancer cells. The research could lead to a promising “viro-immunotherapy” for patients with triple-negative breast cancer,... Read more

Lab Technologies

view channel
Image: MIT researchers have designed a microfluidic device that allows them to precisely trap pairs of cells (one red, one green) and observe how they interact over time (Photo courtesy of Burak Dura, MIT).

New Device Designed to See Communication between Immune Cells

The immune system is a complicated network of many different cells working together to defend against invaders. Effectively combating an infection depends on the interactions between these cells.... Read more

Business

view channel

Program Designed to Provide High-Performance Computing Cluster Systems for Bioinformatics Research

Dedicated Computing (Waukesha, WI, USA), a global technology company, reported that it will be participating in the Intel Cluster Ready program to deliver integrated high-performance computing cluster solutions to the life sciences market. Powered by Intel Xeon processors, Dedicated Computing is providing a range of... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.