Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

New Process to Create Artificial Cell Membranes Developed

By BiotechDaily International staff writers
Posted on 17 Oct 2013
Print article
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Scientists have developed a highly programmable and controlled platform for preparing and experimentally studying synthetic cell-like membrane-enclosed structures.

Understanding the myriad biochemical roles of membranes surrounding cells and inside them requires the ability to prepare realistic synthetic versions of these complex multilayered structures, a long-standing challenge. In a study published in the journal Nature Chemistry, online September 29, 2013, scientists at The Scripps Research Institute (TSRI; Jupiter, FL, USA) describe an innovative method they have developed for studying cell-like membrane-enclosed vesicles—layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity.

Starting with a technique commonly used to deposit molecules on a solid surface, Langmuir-Blodgett deposition, the scientists repurposed the approach to work on liquid objects. They engineered a microfluidic device containing an immobilized array of microscopic cups, each trapping a single droplet of water bathed in oil and lipids. The arrayed trapped droplets are then ready to serve as a foundation for building up a series of lipid layers like coats of paint. “Layer-by-layer membrane assembly allows us to create synthetic cells with membranes of arbitrary complexity at the molecular and supramolecular scale,” said TSRI Assistant Professor Brian Paegel, who authored the study with Research Associate Sandro Matosevic; “We can now control the molecular composition of the inner and outer layers of a bilayer membrane, and even assemble multilayered membranes that resemble the envelope of the cell nucleus.”

The lipid-coated water droplets are first bathed in water. As the water/oil interface encounters the trapped droplets, a second lipid layer coats the droplets and transforms them into unilamellar vesicles. Bathing the vesicles in oil/lipid deposits a third lipid layer, which is followed by deposition of a final layer of lipids. The final product after these three phase exchanges is an immobilized array of double-bilayer vesicles.

“The computer-controlled microfluidic circuits we have constructed will allow us to assemble synthetic cells not only from biologically derived lipids, but from any amphiphile and to measure important chemical and physical parameters, such as permeability and stability,” said Prof. Paegel.

Related Links:
The Scripps Research Institute




Print article

Channels

Genomics/Proteomics

view channel
Image: A dark field photomicrograph showing the spirochete bacterium Borrelia burgdorferi, the pathogen responsible for causing Lyme disease (Photo courtesy of the CDC).

Statins May Help Block Transmission of Lyme Disease

A recent study found that treatment with cholesterol-lowering statins reduced the number of Borrelia burgdorferi bacteria in rodents, which helped to block transmission of Lyme disease. Lyme disease... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.