We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
PURITAN MEDICAL

Download Mobile App




New Process to Create Artificial Cell Membranes Developed

By LabMedica International staff writers
Posted on 17 Oct 2013
Print article
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Image: Quantitative deposition of lipid monolayers yielded vesicles with fluorescence variance in agreement with model predictions (Photo courtesy of Scripps Research Institute, via Nature Chemistry).
Scientists have developed a highly programmable and controlled platform for preparing and experimentally studying synthetic cell-like membrane-enclosed structures.

Understanding the myriad biochemical roles of membranes surrounding cells and inside them requires the ability to prepare realistic synthetic versions of these complex multilayered structures, a long-standing challenge. In a study published in the journal Nature Chemistry, online September 29, 2013, scientists at The Scripps Research Institute (TSRI; Jupiter, FL, USA) describe an innovative method they have developed for studying cell-like membrane-enclosed vesicles—layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity.

Starting with a technique commonly used to deposit molecules on a solid surface, Langmuir-Blodgett deposition, the scientists repurposed the approach to work on liquid objects. They engineered a microfluidic device containing an immobilized array of microscopic cups, each trapping a single droplet of water bathed in oil and lipids. The arrayed trapped droplets are then ready to serve as a foundation for building up a series of lipid layers like coats of paint. “Layer-by-layer membrane assembly allows us to create synthetic cells with membranes of arbitrary complexity at the molecular and supramolecular scale,” said TSRI Assistant Professor Brian Paegel, who authored the study with Research Associate Sandro Matosevic; “We can now control the molecular composition of the inner and outer layers of a bilayer membrane, and even assemble multilayered membranes that resemble the envelope of the cell nucleus.”

The lipid-coated water droplets are first bathed in water. As the water/oil interface encounters the trapped droplets, a second lipid layer coats the droplets and transforms them into unilamellar vesicles. Bathing the vesicles in oil/lipid deposits a third lipid layer, which is followed by deposition of a final layer of lipids. The final product after these three phase exchanges is an immobilized array of double-bilayer vesicles.

“The computer-controlled microfluidic circuits we have constructed will allow us to assemble synthetic cells not only from biologically derived lipids, but from any amphiphile and to measure important chemical and physical parameters, such as permeability and stability,” said Prof. Paegel.

Related Links:
The Scripps Research Institute



Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
Systemic Autoimmune Testing Assay
BioPlex 2200 ANA Screen with MDSS

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Molecular Diagnostics

view channel
Image: Signs of multiple sclerosis show up in blood years before symptoms appear (Photo courtesy of vitstudio/Shutterstock)

Unique Autoantibody Signature to Help Diagnose Multiple Sclerosis Years before Symptom Onset

Autoimmune diseases such as multiple sclerosis (MS) are thought to occur partly due to unusual immune responses to common infections. Early MS symptoms, including dizziness, spasms, and fatigue, often... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: Exosomes can be a promising biomarker for cellular rejection after organ transplant (Photo courtesy of Nicolas Primola/Shutterstock)

Diagnostic Blood Test for Cellular Rejection after Organ Transplant Could Replace Surgical Biopsies

Transplanted organs constantly face the risk of being rejected by the recipient's immune system which differentiates self from non-self using T cells and B cells. T cells are commonly associated with acute... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: A new study has identified patterns that predict ovarian cancer relapse (Photo courtesy of Cedars-Sinai)

Spatial Tissue Analysis Identifies Patterns Associated With Ovarian Cancer Relapse

High-grade serous ovarian carcinoma is the most lethal type of ovarian cancer, and it poses significant detection challenges. Typically, patients initially respond to surgery and chemotherapy, but the... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.