Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

pH-Dependence Described for Key Membrane Bilayer Properties

By BiotechDaily International staff writers
Posted on 16 Oct 2013
Image: pH-dependent changes in intermolecular packing and symmetry of bilayer tails (Photo courtesy of Northwestern University).
Image: pH-dependent changes in intermolecular packing and symmetry of bilayer tails (Photo courtesy of Northwestern University).
Scientists have discovered specific pH-dependent changes in structural symmetry and density of bilayer membranes, enabling a new venue for controlled alteration of properties important for advancement of cell biology and biotechnology.

The study, an interdisciplinary collaboration between multiple Northwestern University laboratories led by principal investigators of Northwestern’s McCormick School of Engineering and Applied Science (Evanston, IL, USA), showed how crystalline order within bilayer membranes, formed from coassembled cationic- and anionic-head amphiphile molecules, can be controlled by varying pH and molecular hydrophobic-tail length. “In nature, living things function at a delicate balance: acidity, temperature, all its surroundings must be within specific limits, or they die,” said Prof. Monica Olvera de la Cruz of Northwestern’s McCormick School of Engineering; “When living things can adapt, however, they are more functional. We wanted to find the specific set of conditions under which bilayers, which control so much of the cell, can morph in nature.”

In bilayer membranes, the two layers of amphiphile molecules form a crystalline shell around its contents. The density and arrangement of the molecules determine the membrane’s porosity, strength, and other properties. Taking advantage of the ionizable charge in the head groups, the team coassembled dilysine (+2) and carboxylate (-1) amphiphile molecules of varying hydrophobic-tail lengths into bilayer membranes at various (physiologically relevant) pH levels, which changed the effective charge of the heads. Then, using X-ray scattering technology at the DuPont-Northwestern-Dow Collaborative Access Team (DND-CAT) at Argonne National Laboratory’s Advanced Photon Source, the researchers analyzed the resulting crystallization formed by the bilayer molecules. Freezing has generally been used to produce electron microscope images of membrane structures, however this process is labor-intensive and changes the structural fidelity, making it less relevant for understanding membrane assembly and behavior under physiological conditions.

From the results, the researchers found that most molecules did not notably respond to the change in acidity, but for those that possessed a critical tail length (which correlates to the level of hydrophylia) the charge of the heads changed to the extent that their two-dimensional crystallization morphed from a periodic rectangular-patterned lattice in more basic pH solutions to a hexagonal lattice in more acidic pH solutions. Shells with a higher symmetry (e.g., hexagonal) are stronger and less brittle than those with lesser symmetry. The change in pH also altered bilayer thickness and compactness. Changing the crystallinity, density, and spacing of molecules within membranes could help researchers control diffusion rates and the encapsulation and release efficiency of molecules in vesicles, which would further shed light on cell function and could enable advances in drug delivery and other bio-inspired technology.

The study was published ahead of print online September 24, 2013, in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS).

Related Links:
McCormick School of Engineering and Applied Science at Northwestern University



Channels

Genomics/Proteomics

view channel
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.... Read more

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.