Features | Partner Sites | Information | LinkXpress
Sign In

Nobel Prize Awarded for Fundamental Discoveries in Molecular Mechanisms of Cellular Vesicle Traffic

By BiotechDaily International staff writers
Posted on 14 Oct 2013
Image: 2013 Physiology or Medicine Nobel laureate Prof. Randy W. Schekman (Photo by H. Goren, courtesy of the Nobel Foundation; HHMI).
Image: 2013 Physiology or Medicine Nobel laureate Prof. Randy W. Schekman (Photo by H. Goren, courtesy of the Nobel Foundation; HHMI).
Image: 2013 Physiology or Medicine Nobel laureate Prof. James E. Rothman (Photo courtesy of the Nobel Foundation; Yale University).
Image: 2013 Physiology or Medicine Nobel laureate Prof. James E. Rothman (Photo courtesy of the Nobel Foundation; Yale University).
Image: 2013 Physiology or Medicine Nobel laureate Prof. Thomas C. Südhof (Photo courtesy of the Nobel Foundation; S. Fisch).
Image: 2013 Physiology or Medicine Nobel laureate Prof. Thomas C. Südhof (Photo courtesy of the Nobel Foundation; S. Fisch).
The 2013 Nobel Prize for Physiology or Medicine jointly awarded to scientists James E. Rothman, Randy W. Schekman, and Thomas C. Südhof recognizes the fundamental nature of their discoveries about how the cell organizes one of its major transport systems—about the machinery regulating vesicle traffic and the molecular principles that govern how this cellular cargo is precisely delivered to the right place at the right time.

Through their discoveries, they have revealed this exquisitely controlled system, the disturbance of which has deleterious effects and contributes to various medical disorders, including neurological diseases, diabetes, and immunological disorders. Prof. Schekman, currently at the University of California at Berkeley (USA) and an investigator of Howard Hughes Medical Institute (USA), discovered a set of genes required for vesicle traffic. Prof. Rothman, currently at Yale University (New Haven, CT, USA), unraveled protein machinery that allows vesicle membranes to fuse with their target membranes. Prof. Südhof, currently at Stanford University (CA, USA) and an investigator of Howard Hughes Medical Institute, revealed signals that instruct vesicles to release their cargo with precision.

The cell faces the problem of shipping to the right destination at the right time many types of molecules (including hormones, neurotransmitters, cytokines, and enzymes) to be transported and delivered to other locations in the cell or exported out. How do these vesicles know where and when to deliver their cargo?

Traffic congestion: Prof. Schekman was fascinated by how the cell organizes its transport system and in the 1970s decided to study its genetic basis by using yeast as a model system. In a genetic screen, he identified yeast cells with defective transport machinery, giving rise to vesicles piling up in certain parts of the cell. He found that the cause of this congestion was genetic and went on to identify the mutated genes. He identified three classes of genes that control different facets, thereby providing new insights into this tightly regulated machinery.

Docking: Prof. Rothman was also intrigued by the nature of the cell’s transport system. When studying vesicle transport in mammalian cells in the 1980s and 1990s, he discovered that a protein complex enables vesicles to dock and fuse with their target membranes. During fusion proteins on the vesicle and target membranes bind to each other like a zipper. The fact that there are many such proteins and that they bind only in specific combinations ensures that cargo is delivered to a precise location.

It turned out that some of the genes Prof. Schekman had discovered in yeast coded for proteins corresponding to those Prof. Rothman identified in mammals, revealing an ancient evolutionary origin of this transport system, which operates with the same general principles in yeast and humans. Collectively, they mapped critical components of this machinery.

Timing: Prof. Südhof was interested in how nerve cells communicate with one another in the brain. Synaptic vesicles release neurotransmitters upon nerve cell signaling to its neighbors. How is this controlled so precisely? Calcium ions were known to be involved and in the 1990s Prof. Südhof searched for calcium sensitive proteins in nerve cells. He identified molecular machinery that responds to an influx of calcium ions and directs neighbor proteins rapidly to bind synaptic vesicles to the outer membrane of the nerve cell. The zipper opens up and the contents are released. This explained how temporal precision is achieved and how vesicle contents can be released on command.

Together, these discoveries have had a major impact on our understanding of cellular transport mechanisms.

Related Links:

Nobel Foundation

comments powered by Disqus



view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more


view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more


view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
Copyright © 2000-2014 Globetech Media. All rights reserved.