Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Scientists Unravel Antibacterial Mechanisms of Plasma Components

By BiotechDaily International staff writers
Posted on 10 Oct 2013
Image: Plasma Reactor – cold atmospheric-pressure plasmas are generated and tested for effects on bacterial cells and molecules (Photo courtesy of Jan-Wilm Lackmann, Ruhr University Bochum.)
Image: Plasma Reactor – cold atmospheric-pressure plasmas are generated and tested for effects on bacterial cells and molecules (Photo courtesy of Jan-Wilm Lackmann, Ruhr University Bochum.)
Scientists have unraveled the main mechanisms of the antibacterial action of cold atmospheric-pressure plasmas, further indicating their potential value as disinfection and antibiotic agents.

As they destroy bacteria very efficiently, atmospheric-pressure plasmas constitute an alternative to chemical disinfectants and are already being used as surgical tools, for example in nasal and intestinal polyp extraction. Their disinfectant properties may also be of interest for other applications, including wound treatment, cosmetic care, and in certain uses even as alternatives to antibiotics. “In ten years, bacteria might have developed resistance against all antibiotics that are available to us today,” said Junior Professor Dr. Julia Bandow, head of the Junior Research Group Microbial Antibiotic Research at Ruhr-Universität Bochum (Ruhr University Bochum (RUB); Bochum, Germany). Without antibiotics, most surgeries would become impossible due to high infection rates.

Cold atmospheric-pressure plasmas attack the prokaryote cell envelope, proteins, and DNA. “This is too great a challenge for the repair mechanisms and the stress response systems of bacteria,” said Prof. Bandow; “In order to develop plasmas for specific applications, for example for treating chronic wounds or for root canal disinfection, it is important to understand how they affect cells. Thus, undesirable side effects may be avoided right from the start.”

Effects of the plasma-emitted particles have now been investigated by a team of biologists, plasma physicists, and chemists at RUB. Depending on their specific composition, plasmas may contain different components, for example ions, radicals, or light in the ultraviolet spectrum—UV photons. Until now, scientists have had almost no understanding about which components of the complex mixture contribute to which extent to the antibacterial effect. Prof. Bandow’s team has analyzed the effect of reactive particles (radicals and ozone) and UV photons on both the cellular level and on the level of single biomolecules, namely DNA and proteins. On the cellular level, the reactive particles alone were most effective: they destroyed the cell envelope (UV radiation did not). On the molecular level, both plasma components were effective: both UV radiation and reactive particles damaged the DNA; in addition, the reactive particles inactivated proteins. Thus, damage to the cellular envelope as well as to DNA and proteins contribute to the bactericidal properties of cold atmospheric-pressure plasma.

The study was published September 25, 2013, in the Journal of the Royal Society Interface.

Related Links:

Ruhr University Bochum



Channels

Genomics/Proteomics

view channel
Image: Typical antibodies (left) unfold in the harsh environment of the cell. Camelid antibodies (right) are smaller and more stable (Photo courtesy of the Washington University School of Medicine).

Double Targeting Approach Increases Potential for Cancer Treatment with Oncolytic Viruses

Cancer researchers have used a double targeting approach to direct oncolytic viruses specifically to tumor cells where they reproduce until the cancer cells burst, releasing more viruses to infect and... Read more

Drug Discovery

view channel
Image: Molecular model of the protein Saposin C (Photo courtesy of Wikimedia Commons).

Nanovesicles Kill Human Lung Cancer Cells in Culture and in a Mouse Xenograft Model

Nanovesicles assembled from the protein Saposin C (SapC) and the phospholipid dioleoylphosphatidylserine (DOPS) were shown to be potent inhibitors of lung cancer cells in culture and in a mouse xenograft model.... Read more

Biochemistry

view channel

Possible New Target Found for Treating Brain Inflammation

Scientists have identified an enzyme that produces a class of inflammatory lipid molecules in the brain. Abnormally high levels of these molecules appear to cause a rare inherited eurodegenerative disorder, and that disorder now may be treatable if researchers can develop suitable drug candidates that suppress this enzyme.... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.