Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING
JIB
GLOBETECH PUBLISHING

Stem Cell Research Reveals the Brain-Protective Qualities of Astrocytes in Stroke Therapy

By BiotechDaily International staff writers
Posted on 07 Aug 2013
Image: Differentiated neural stem cells (Photo courtesy Dr. Paul Knoepfler, UC Davis).
Image: Differentiated neural stem cells (Photo courtesy Dr. Paul Knoepfler, UC Davis).
Stem cell research for the disease has focused on developing therapeutic neurons to repair tissue damaged when oxygen to the brain is restricted by a blood clot or break in a vessel. New research, however, indicates that other cells, in particular astrocytes, may be better suited for the task.

The large, collaborative study, published July 23, 2013 in the journal Nature Communications, demonstrated that astrocytes can protect brain tissue and reduce disability due to stroke and other ischemic brain disorders.

The scientists started by using a transcription factor known as Olig2 to differentiate human embryonic stem cells into astrocytes. This approach generated a previously undiscovered type of astrocyte called Olig2PC-Astros. More significantly, it generated those astrocytes at nearly 100% purity.

The researchers then compared the effects of Olig2PC-Astros, another type of astrocyte called NPC-Astros and no treatment whatsoever on three groups of rats with ischemic brain injuries. The rats transplanted with Olig2PC-Astros experienced superior neuroprotection together with higher levels of brain-derived neurotrophic factor (BDNF), a protein associated with nerve growth and survival. The rats transplanted with NPC-Astros or that received no treatment showed much higher levels of neuronal loss.

To determine whether the astrocytes affected behavior, the researchers used a water maze to measure the rats’ learning and memory. In the maze, the rats were required to use memory rather than vision to reach a destination. When tested 14 days after transplantation, the rats receiving Olig2PC-Astros navigated the maze in significantly less time than the rats that received NPC-Astros or no treatment.



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A leukemia cell coated with antibody is marked for destruction by activated natural killer cells (Photo courtesy of the University of Southern California).

Leukemia Cells Are Killed in Culture by Immune Cells Grown from the Same Patient

Immune system natural killer (NK) cells were isolated from leukemia patients, expanded in culture, and then shown in an in vitro system to attack and destroy cancer cells from the original cell donors.... Read more

Drug Discovery

view channel
Image: Synthetic ion transporters can induce apoptosis by facilitating chloride anion transport into cells (Photo courtesy of the University of Texas, Austin).

Experimental Drug Kills Cancer Cells by Interfering with Their Ion Transport Mechanism

An experimental anticancer drug induces cells to enter a molecular pathway leading to apoptosis by skewing their ion transport systems to greatly favor the influx of chloride anions. To promote development... Read more

Therapeutics

view channel
Image: Liver cells regenerated in mice treated with a new drug (right) compared with a control group (center) after partial liver removal. Healthy liver cells are shown at left (Photo courtesy of Marshall et al, 2014, the Journal of Experimental Medicine).

New Drug Triggers Liver Regeneration After Surgery

Investigators have revealed that an innovative complement inhibitor decreases complement-mediated liver cell death, and actually stimulates postsurgery liver regrowth in mice. Liver cancer often results... Read more

Lab Technologies

view channel

White-Matter Deficits Found in Codeine-Containing Cough Syrup Users

A magnetic resonance imaging (MRI) study of chronic users of codeine-containing cough syrups (CCS) has found deficits in specific regions of brain white matter and linked these changes with increased impulsivity in codeine-containing cough syrup users. These findings were consistent with findings from earlier research of... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.