Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Stem Cell Research Reveals the Brain-Protective Qualities of Astrocytes in Stroke Therapy

By BiotechDaily International staff writers
Posted on 07 Aug 2013
Image: Differentiated neural stem cells (Photo courtesy Dr. Paul Knoepfler, UC Davis).
Image: Differentiated neural stem cells (Photo courtesy Dr. Paul Knoepfler, UC Davis).
Stem cell research for the disease has focused on developing therapeutic neurons to repair tissue damaged when oxygen to the brain is restricted by a blood clot or break in a vessel. New research, however, indicates that other cells, in particular astrocytes, may be better suited for the task.

The large, collaborative study, published July 23, 2013 in the journal Nature Communications, demonstrated that astrocytes can protect brain tissue and reduce disability due to stroke and other ischemic brain disorders.

The scientists started by using a transcription factor known as Olig2 to differentiate human embryonic stem cells into astrocytes. This approach generated a previously undiscovered type of astrocyte called Olig2PC-Astros. More significantly, it generated those astrocytes at nearly 100% purity.

The researchers then compared the effects of Olig2PC-Astros, another type of astrocyte called NPC-Astros and no treatment whatsoever on three groups of rats with ischemic brain injuries. The rats transplanted with Olig2PC-Astros experienced superior neuroprotection together with higher levels of brain-derived neurotrophic factor (BDNF), a protein associated with nerve growth and survival. The rats transplanted with NPC-Astros or that received no treatment showed much higher levels of neuronal loss.

To determine whether the astrocytes affected behavior, the researchers used a water maze to measure the rats’ learning and memory. In the maze, the rats were required to use memory rather than vision to reach a destination. When tested 14 days after transplantation, the rats receiving Olig2PC-Astros navigated the maze in significantly less time than the rats that received NPC-Astros or no treatment.



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Illustration of the apoER2 receptor protein shows the structure of the entire protein in detail (Photo courtesy of Wikimedia Commons).

Risk of Cardiovascular Disease Linked to Apolipoprotein E Variants

The apoE4 variant form of circulating apolipoprotein E (apoE) leads to increased risk of cardiovascular disease by blocking binding of the normal apoE3 form to the apoliprotein E receptor 2 (apoER2) in... Read more

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.