Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Aged Cells Retain Capacity for Rejuvenation via Enhanced Extracellular Support

By BiotechDaily International staff writers
Posted on 19 Dec 2012
Researchers have found that aged human skin fibroblasts retain their capacity for a high degree of reactivation and that this capacity can be significantly restored simply by enhancing the aged extracellular structural support.

In an independent study at the University of Michigan Medical School’s Department of Dermatology (Ann Arbor, MI, USA), scientists have succeeded in making the skin cells of senior citizens behave much like younger cells again by adding more fiber filler to the aging scaffold supporting the cells. The study gives a new perspective on the importance of the extracellular matrix (ECM) in the aging process of skin and possibly also in other types of tissue.

The dermal ECM provides strength and resiliency to skin and consists mostly of type I collagen fibrils produced by the fibroblasts. With aging, ECM collagen fragmentation results in reduced fibroblast cell function and in cell shrinkage. In the study, injection of cross-linked hyaluronic acid (a dermal filler that enhances ECM mechanical support and is commonly used to treat aging facial skin) into the buttock skin of 21 individual volunteers about 80 years of age, or into dermal-equivalent cultures, stimulated TGF-β signaling-dependent production of type I collagen and fibroblast elongation. Also observed in vivo were fibroblast proliferation, expanded vasculature, and increased epidermal thickness. Over three months, the fibroblasts showed increased expression of collagen-related genes, produced more collagen, and bound more effectively to the ECM.

“This shows that skin cells in elderly people have the capacity to respond robustly in a very positive way to alterations in the mechanical property of their environment,” said senior author Gary Fisher, PhD and Harry Helfman professor of Molecular Dermatology. “By altering the matrix using an external filler and increasing the internal pressure, we’ve shown that we can essentially trigger a signal for cells to wake up,” said Prof. Fisher. However, he cautions that the new work does not suggest that cosmetic filler should be used throughout the body. Rather, the importance of the discovery lies mainly in the potential to harness the broader understanding of the ECM for prevention and for more effective therapeutic strategies; such as in relating to skin thinning due to aging, for example, which leaves skin more prone to tearing and interferes with healing after incisions or injury.

The study was reported October 25, 2012, in the Journal of Investigative Dermatolology advance online publication.

Related Links:

University of Michigan Medical School, Dept. of Dermatology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.