Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Aged Cells Retain Capacity for Rejuvenation via Enhanced Extracellular Support

By BiotechDaily International staff writers
Posted on 19 Dec 2012
Researchers have found that aged human skin fibroblasts retain their capacity for a high degree of reactivation and that this capacity can be significantly restored simply by enhancing the aged extracellular structural support.

In an independent study at the University of Michigan Medical School’s Department of Dermatology (Ann Arbor, MI, USA), scientists have succeeded in making the skin cells of senior citizens behave much like younger cells again by adding more fiber filler to the aging scaffold supporting the cells. The study gives a new perspective on the importance of the extracellular matrix (ECM) in the aging process of skin and possibly also in other types of tissue.

The dermal ECM provides strength and resiliency to skin and consists mostly of type I collagen fibrils produced by the fibroblasts. With aging, ECM collagen fragmentation results in reduced fibroblast cell function and in cell shrinkage. In the study, injection of cross-linked hyaluronic acid (a dermal filler that enhances ECM mechanical support and is commonly used to treat aging facial skin) into the buttock skin of 21 individual volunteers about 80 years of age, or into dermal-equivalent cultures, stimulated TGF-β signaling-dependent production of type I collagen and fibroblast elongation. Also observed in vivo were fibroblast proliferation, expanded vasculature, and increased epidermal thickness. Over three months, the fibroblasts showed increased expression of collagen-related genes, produced more collagen, and bound more effectively to the ECM.

“This shows that skin cells in elderly people have the capacity to respond robustly in a very positive way to alterations in the mechanical property of their environment,” said senior author Gary Fisher, PhD and Harry Helfman professor of Molecular Dermatology. “By altering the matrix using an external filler and increasing the internal pressure, we’ve shown that we can essentially trigger a signal for cells to wake up,” said Prof. Fisher. However, he cautions that the new work does not suggest that cosmetic filler should be used throughout the body. Rather, the importance of the discovery lies mainly in the potential to harness the broader understanding of the ECM for prevention and for more effective therapeutic strategies; such as in relating to skin thinning due to aging, for example, which leaves skin more prone to tearing and interferes with healing after incisions or injury.

The study was reported October 25, 2012, in the Journal of Investigative Dermatolology advance online publication.

Related Links:

University of Michigan Medical School, Dept. of Dermatology



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: To adhere to catheters and start urinary tract infections, bacteria extend microscopic fibers with sticky proteins at their ends. Researchers have developed a vaccine that blocks the EbpA protein, visible as a white bulge above, and stops infections in mice (Photo courtesy of Dr. John Heuser, Washington University School of Medicine).

Blocking Binding of Bacteria to Fibrinogen Prevents Biofilm Formation and Catheter-Associated Bladder Infection in Mice

A team of molecular microbiologists has identified and targeted a critical step in biofilm formation and developed a vaccine that prevents catheter-associated urinary tract infections in mice.... Read more

Drug Discovery

view channel
Image: S-649266 has more robust antibacterial activity than established antibiotics against multidrug-resistant bacteria (Photo courtesy of Shionogi).

Novel Antibiotic Shows Potential for Broad Range of Infections

The emergence of bacterial resistance to known antibacterial agents is becoming a major challenge in treating the infection caused by multi drug resistant (MDR) bacteria. In order to treat bacterial... Read more

Business

view channel

Collaboration of Mayo Clinic and IBM Cognitive Computer Devised to Improve Clinical Trial Research

The Mayo Clinic (Rochester, MN, USA) and IBM (Armonk, NY, USA) recently announced plans to pilot Watson, the IBM cognitive computer, to match patients more rapidly with suitable clinical trials. A proof-of-concept phase is currently ongoing, with the intent to introduce it into clinical use in early 2015.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.