Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PZ HTL SA
GLOBETECH PUBLISHING LLC

Protease Found Crucial for First-Line Immune Defense Complement Activation Pathway

By BiotechDaily International staff writers
Posted on 04 Dec 2012
Scientists have established a lectin-associated protease to be central to the complement pathway activation. The discovery answers a long-standing question in immunology and opens new possibilities for manipulating the immune system in medical therapy.

In an international collaboration with scientists in the USA and Turkey, scientists at Denmark’s Aarhus University (Aarhus, Denmark) led the study mapping the mechanism underlying the lectin-pathway central to complement pathway activation. Activation of the lectin pathway of complement has been thought to occur via recognition of pathogens via mannan-binding lectin (MBL) or ficolins in complex with MBL-associated serine proteases (MASPs).

Using blood samples from a unique patient harboring a rare genetic syndrome, the researchers have now established that it is the enzyme MASP-1 that is key to activation of the complement system. In mice, MASP-1 and MASP-3 had been previously reported to be central also to alternative pathway function. The patient in the current study harbors a nonsense mutation in the common part of the MASP1 gene and hence is deficient in both MASP-1 and MASP-3. Surprisingly, the researchers found that the alternative pathway in this patient functions normally, and is unaffected by reconstitution with MASP-1 and MASP-3. Conversely, they found that the patient has a nonfunctional lectin pathway, which can be restored by MASP-1, implying that this component is crucial for complement activation. Additional findings further established the central role of MASP-1. MASP-1 is able to efficiently auto-activate, for example when it senses a bacterium; it then activates MASP-2, which in turn activates the rest of the complement system cascade that attacks the bacteria.

The discovery may have implications for the treatment of various medical conditions, including cancer and stroke patients. "For example this system is important for the survival of patients undergoing chemotherapy, because this treatment suppresses other functions of the immune system - so in their case it is beneficial to "rev up" the system.
But following a heart attack there may be reasons to instead dampen the system. The complement system has an unfortunate tendency to attack tissues that have suffered damage due to deprivation of oxygen, and thereby it exacerbates the damage already done to the heart,” explained Dr. Soeren Egedal Degn, first author and postdoc at Aarhus University.

The findings were published October 15, 2012, in the Journal of Immunology.

Related Links:
Aarhus University



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.