Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Life Expectancy Highly Correlated with Telomere Length and Dynamics

By BiotechDaily International staff writers
Posted on 03 Dec 2012
Image: The Seychelles Warbler (Acrocephalus sechellensis) (Photo courtesy of University of East Anglia).
Image: The Seychelles Warbler (Acrocephalus sechellensis) (Photo courtesy of University of East Anglia).
Studying a bird model in the wild, scientists have for the first time found telomere length and dynamics to be highly predictive of “biological” age and life expectancy for individuals in a given population.

Variation in the length and rate of loss of the protective telomere chromosome caps are known to be major factors linked to cellular lifespan, however, little is known about the extent to which telomere length and dynamics predict organismal lifespan in nature. The 20-year research project, now published November 21, 2012, in the journal Molecular Ecology, is the first of its kind to measure telomeres across the entire lifespan of individuals in a wild population. The model population was a set of 320 Seychelles Warblers, formally Acrocephalus sechellensis, with essentially no predators on the small, well-isolated Cousin Island. The researchers studied life-long adult telomere dynamics (1-17 years) and their relationship to mortality under natural conditions in a sample subset of 204 individuals. Blood samples were collected twice per year and telomere length analyzed. The results showed that individuals differ radically in how quickly their telomeres shorten with age, having shorter telomeres at any age is associated with an increased risk of death, and that telomere length is a better indicator of future life-expectancy than chronological age and may therefore act as an indicator of biological age.


“The Seychelles Warbler is [also ideal in that] we can follow individuals throughout their lives, right through to old age,” said lead scientist Dr. David S. Richardson of the University of East Anglia (Norwich, UK). “It would be virtually impossible to do such a study in humans. For one thing, it would take a very long time to study a human lifespan. Also in humans we would normally, quite rightly, intervene in cases of disease, so it wouldn’t be a natural study,” he added.

About the results, Dr. Richardson further explained: “We investigated whether, at any given age, their telomere lengths could predict imminent death. We found that short and rapidly shortening telomeres were a good indication that the bird would die within a year. We also found that individuals with longer telomeres had longer life spans overall. [...] While telomeres do shorten with chronological age, the rate at which this happens differs between individuals of the same age [largely as they] experience different amounts of biological stress due to the challenges and exertions they face in life. We found that telomeres are linked to body condition and reflect the history of oxidative stress that has occurred within an individual’s lifetime. The healthier you are, or have been, the better telomeres you have. But it’s hard to know whether this is a consequence of being healthy or a cause.”

Related Links:

University of East Anglia



comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.