Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Life Expectancy Highly Correlated with Telomere Length and Dynamics

By BiotechDaily International staff writers
Posted on 03 Dec 2012
Image: The Seychelles Warbler (Acrocephalus sechellensis) (Photo courtesy of University of East Anglia).
Image: The Seychelles Warbler (Acrocephalus sechellensis) (Photo courtesy of University of East Anglia).
Studying a bird model in the wild, scientists have for the first time found telomere length and dynamics to be highly predictive of “biological” age and life expectancy for individuals in a given population.

Variation in the length and rate of loss of the protective telomere chromosome caps are known to be major factors linked to cellular lifespan, however, little is known about the extent to which telomere length and dynamics predict organismal lifespan in nature. The 20-year research project, now published November 21, 2012, in the journal Molecular Ecology, is the first of its kind to measure telomeres across the entire lifespan of individuals in a wild population. The model population was a set of 320 Seychelles Warblers, formally Acrocephalus sechellensis, with essentially no predators on the small, well-isolated Cousin Island. The researchers studied life-long adult telomere dynamics (1-17 years) and their relationship to mortality under natural conditions in a sample subset of 204 individuals. Blood samples were collected twice per year and telomere length analyzed. The results showed that individuals differ radically in how quickly their telomeres shorten with age, having shorter telomeres at any age is associated with an increased risk of death, and that telomere length is a better indicator of future life-expectancy than chronological age and may therefore act as an indicator of biological age.


“The Seychelles Warbler is [also ideal in that] we can follow individuals throughout their lives, right through to old age,” said lead scientist Dr. David S. Richardson of the University of East Anglia (Norwich, UK). “It would be virtually impossible to do such a study in humans. For one thing, it would take a very long time to study a human lifespan. Also in humans we would normally, quite rightly, intervene in cases of disease, so it wouldn’t be a natural study,” he added.

About the results, Dr. Richardson further explained: “We investigated whether, at any given age, their telomere lengths could predict imminent death. We found that short and rapidly shortening telomeres were a good indication that the bird would die within a year. We also found that individuals with longer telomeres had longer life spans overall. [...] While telomeres do shorten with chronological age, the rate at which this happens differs between individuals of the same age [largely as they] experience different amounts of biological stress due to the challenges and exertions they face in life. We found that telomeres are linked to body condition and reflect the history of oxidative stress that has occurred within an individual’s lifetime. The healthier you are, or have been, the better telomeres you have. But it’s hard to know whether this is a consequence of being healthy or a cause.”

Related Links:

University of East Anglia



Channels

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

“Softer” Mass Spec Techniques Gain Advantage in Biomarker Discovery

Two mass spectrometry (MS) technologies, MALDI and DESI, are increasing in applications as their effectiveness is established, according to Kalorama Information (New York, NY, USA) in its report “Proteomics Markets for Research and IVD Applications (Mass Spectrometry, Chromatography, Microarrays, Electrophoresis, Immunoassays,... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.