We use cookies to understand how you use our site and to improve your experience. This includes personalizing content and advertising. To learn more, click here. By continuing to use our site, you accept our use of cookies. Cookie Policy.

Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Download Mobile App




Hormone Therapy Response Associated with Signaling Activity in Circulating Cancer Cells

By LabMedica International staff writers
Posted on 07 Nov 2012
Print article
A study monitoring hormone receptor activity in tumor cells from patients being treated for resistant metastatic prostate cancer has found that such monitoring may be useful for indicating which patients will be more likely to respond well to continued therapy.

Treatments that inhibit the androgen receptor (AR) pathway, androgen-deprivation therapy (ADT), are initially highly effective in most patients with metastatic prostate cancer (MPC); however, since cancer cells often develop resistance, secondary hormonal therapies are being tested to suppress androgen receptor reactivation. There are variable responses to such secondary therapy, but no reliable biomarkers are available to guide the use of AR pathway inhibitors in treating resistant MPC. A collaborative team of researchers led by Prof. Daniel A. Haber, MD, PhD, and director of the Massachusetts General Hospital Cancer Center (Charlestown, MA, USA) have now established a method using microfluidic capture of circulating tumor cells (CTCs) to isolate cancer cells from the blood of patients with MPC and single-cell immunofluorescence analysis to measure androgen receptor signaling activity in the individual CTCs.

Monitoring was performed on CTCs from patients with castration-resistant prostate cancer (CRPC), before and after therapeutic interventions. Prior to the initiation of ADT, the AR pathway was turned on in most CTCs from newly diagnosed patients. Initiation of first-line ADT induced a profound switch from “AR-on” to “AR-off” CTCs. In patients whose cancer had become resistant after initially responding well to androgen-deprivation therapy, the CTCs population became highly variable - some CTCs were AR-on, others AR-off, and still others had characteristics of both AR-on and AR-off. The presence of cells with a mixed AR signaling pattern was associated with an adverse treatment outcome. In addition, in patients treated with a new drug, abiraterone acetate, which achieves more complete androgen deprivation than earlier treatments, an increased percentage of AR-on CTCs despite abiraterone treatment was associated with decreased overall survival.

The assay may provide a valuable marker to help target such treatments to patients more likely to respond to second-line therapies. "This study is a proof of principle that it is possible to monitor, in patients with metastatic prostate cancer, the androgen receptor signaling pathway in real time, repeatedly and noninvasively," said Prof. Haber. He added, "As more drugs are developed that target the different pathways that drive the recurrence of metastatic prostate cancer in different patients, it will become essential to know which drug and which pathway is relevant in each patient. Our assay will be an effective way to interrogate the tumor and follow it during the course of treatment to monitor therapy response and the emergence of drug resistance."

The study was published early online October 23, 2012, in Cancer Discovery, a journal of the American Association for Cancer Research.

Related Links:
Massachusetts General Hospital Cancer Center
American Association for Cancer Research

Platinum Member
COVID-19 Rapid Test
OSOM COVID-19 Antigen Rapid Test
Magnetic Bead Separation Modules
MAG and HEATMAG
Anti-Cyclic Citrullinated Peptide Test
GPP-100 Anti-CCP Kit
Gold Member
ADAMTS-13 Protease Activity Test
ATS-13 Activity Assay

Print article

Channels

Clinical Chemistry

view channel
Image: The 3D printed miniature ionizer is a key component of a mass spectrometer (Photo courtesy of MIT)

3D Printed Point-Of-Care Mass Spectrometer Outperforms State-Of-The-Art Models

Mass spectrometry is a precise technique for identifying the chemical components of a sample and has significant potential for monitoring chronic illness health states, such as measuring hormone levels... Read more

Hematology

view channel
Image: The CAPILLARYS 3 DBS devices have received U.S. FDA 510(k) clearance (Photo courtesy of Sebia)

Next Generation Instrument Screens for Hemoglobin Disorders in Newborns

Hemoglobinopathies, the most widespread inherited conditions globally, affect about 7% of the population as carriers, with 2.7% of newborns being born with these conditions. The spectrum of clinical manifestations... Read more

Immunology

view channel
Image: A false color scanning election micrograph of lung cancer cells grown in culture (Photo courtesy of Anne Weston)

AI Tool Precisely Matches Cancer Drugs to Patients Using Information from Each Tumor Cell

Current strategies for matching cancer patients with specific treatments often depend on bulk sequencing of tumor DNA and RNA, which provides an average profile from all cells within a tumor sample.... Read more

Microbiology

view channel
Image: Microscope image showing human colorectal cancer tumor with Fusobacterium nucleatum stained in a red-purple color (Photo courtesy of Fred Hutch Cancer Center)

Mouth Bacteria Test Could Predict Colon Cancer Progression

Colon cancer, a relatively common but challenging disease to diagnose, requires confirmation through a colonoscopy or surgery. Recently, there has been a worrying increase in colon cancer rates among younger... Read more

Pathology

view channel
Image: Fingertip blood sample collection on the Babson Handwarmer (Photo courtesy of Babson Diagnostics)

Unique Hand-Warming Technology Supports High-Quality Fingertip Blood Sample Collection

Warming the hand is an effective way to facilitate blood collection from a fingertip, yet off-the-shelf solutions often do not fulfill laboratory requirements. Now, a unique hand-warming technology has... Read more
Copyright © 2000-2024 Globetech Media. All rights reserved.