Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Metabolic Incentives to Cooperate Controlled by Bacterial Quorum Sensing

By BiotechDaily International staff writers
Posted on 24 Oct 2012
Scientists have found that bacterial quorum sensing controls when and which cells in a given population will release “public goods” into their environment, and does so in a way that is at least partly achieved by specific metabolic advantage “incentives” for the individual cells.

Quorum sensing (the form of intercellular bacterial communication that enables individual cells to recognize and react to the cell population density of their surrounding community) is a key regulator of the production and release of “public goods” - extracellular products that can be used by any community member. The quorum sensing system is also involved in controlling expression of a few “private goods” - intracellular products not available to other cells. In this study published in the October 12, 2012, issue of the journal Science, the opportunistic lung pathogen Pseudomonas aeruginosa was studied under various metabolic conditions that changed the metabolic cost/benefit balance of producing “public goods” and thereby the competitive balance between “cooperator” cells and “cheater” cells; “cheater” cells being quorum sensing mutants that no longer produce “public goods” in response to increasing population density.

The scientists, from the University of Washington School of Medicine (Seattle, WA), found that quorum sensing–controlled expression of certain intracellular “private goods” can put a metabolic constraint on “cheater” cells and prevent a population collapse. When the researchers manipulated the environment so that the cost of cell cooperation was high and so induced destabilization of cooperation, the “cheater” cells were found to overtake the cooperating producer cells until the population collapsed. The scientists were also able to manipulate environmental conditions to restrict the “cheater” population growth and stabilize quorum sensing (population density) dependent cooperation, thereby providing the “public goods” required to maintain the population and prevent collapse of the community.

Metabolic constraint of social “cheating” provides an explanation for “private goods” regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology. The findings also provide additional indication of the potential for developing antibiotic-independent approaches to manage infections. In the future, conditions may be manipulated in order to cause cell populations of dangerous pathogens to collapse - "Perhaps, one day, we'll be able to manipulate infections so that bacterial cooperation is destabilized and infections are resolved," said Dr. Peter Greenberg, UW professor of microbiology and principal author of the study. "We've also gained new insights into how cell cooperation can be stably maintained in biology. It is much more straightforward to study sociality in bacteria than in animals. The payoffs may be in understanding what drives cooperation and conflict in general, and in developing strategies for infection control,” added Prof. Greenberg.

Related Links:

University of Washington School of Medicine



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: Differences in the structure of a small lung artery (top row) and heart cross section (lower row) of rodents without disease (far left column); with pulmonary hypertension (middle) and a diseased rodent treated with the HDL peptide (right). Note the much narrowed lung artery, and thick walls and larger chamber of the heart in the diseased animal and improvements with 4F peptide treatment (Photo courtesy of UCLA - University of California, Los Angeles).

Apolipoprotein A-1 Mimetic Peptide Reverses Pulmonary Hypertension in Rodent Models

A small peptide that mimics the activity of apolipoprotein A-1 (apo A-1), the main protein component of the high density lipoproteins (HDL), counteracted the effects of oxidized lipids and alleviated symptoms... Read more

Drug Discovery

view channel
Image: The five stages of biofilm development: (1) Initial attachment, (2) Irreversible attachment, (3) Maturation I, (4) Maturation II, and (5) Dispersion. Each stage of development in the diagram is paired with a photomicrograph of a developing P. aeruginosa biofilm. All photomicrographs are shown to same scale (Photo courtesy of Wikimedia Commons).

Ionic Liquids Disperse Bacterial Biofilms and Increase Antibiotic Susceptibility

The ionic liquid choline-geranate was shown to effectively eliminate the protective biofilm generated by bacteria such as Salmonella enterica and Pseudomonas aeruginosa and to significantly increase the... Read more

Therapeutics

view channel
Image: Hair follicle (blue) being attacked by T cells (green) (Photo courtesy of Christiano Lab/Columbia University Medical Center).

Hair Restoration Method Clones Patients’ Cells to Grow New Hair Follicles

Researchers have developed of a new hair restoration approach that uses a patient’s cells to grow new hair follicles. In addition, the [US] Food and Drugs Administration (FDA) recently approved a new drug... Read more

Lab Technologies

view channel
Image: Leica Microsystems launches the inverted research microscope platform Leica DMi8 (Photo courtesy of Leica Microsystems).

New Inverted Microscope Designed to Readily Adapt to Changing Research Demands

A new inverted microscope for biotech and other life science laboratories was designed to readily accommodate modifications and upgrades to allow it to keep current with changing research demands and interests.... Read more

Business

view channel

Partnership Established to Decode Bowel Disease

23andMe (Mountain View, CA,USA), a personal genetics company, is collaborating with Pfizer, Inc. (New York, NY, USA), in which the companies will seek to enroll 10,000 people with inflammatory bowel disease (IBD) in a research project designed to explore the genetic factors associated with the onset, progression, severity,... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.