Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Metabolic Incentives to Cooperate Controlled by Bacterial Quorum Sensing

By BiotechDaily International staff writers
Posted on 24 Oct 2012
Scientists have found that bacterial quorum sensing controls when and which cells in a given population will release “public goods” into their environment, and does so in a way that is at least partly achieved by specific metabolic advantage “incentives” for the individual cells.

Quorum sensing (the form of intercellular bacterial communication that enables individual cells to recognize and react to the cell population density of their surrounding community) is a key regulator of the production and release of “public goods” - extracellular products that can be used by any community member. The quorum sensing system is also involved in controlling expression of a few “private goods” - intracellular products not available to other cells. In this study published in the October 12, 2012, issue of the journal Science, the opportunistic lung pathogen Pseudomonas aeruginosa was studied under various metabolic conditions that changed the metabolic cost/benefit balance of producing “public goods” and thereby the competitive balance between “cooperator” cells and “cheater” cells; “cheater” cells being quorum sensing mutants that no longer produce “public goods” in response to increasing population density.

The scientists, from the University of Washington School of Medicine (Seattle, WA), found that quorum sensing–controlled expression of certain intracellular “private goods” can put a metabolic constraint on “cheater” cells and prevent a population collapse. When the researchers manipulated the environment so that the cost of cell cooperation was high and so induced destabilization of cooperation, the “cheater” cells were found to overtake the cooperating producer cells until the population collapsed. The scientists were also able to manipulate environmental conditions to restrict the “cheater” population growth and stabilize quorum sensing (population density) dependent cooperation, thereby providing the “public goods” required to maintain the population and prevent collapse of the community.

Metabolic constraint of social “cheating” provides an explanation for “private goods” regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology. The findings also provide additional indication of the potential for developing antibiotic-independent approaches to manage infections. In the future, conditions may be manipulated in order to cause cell populations of dangerous pathogens to collapse - "Perhaps, one day, we'll be able to manipulate infections so that bacterial cooperation is destabilized and infections are resolved," said Dr. Peter Greenberg, UW professor of microbiology and principal author of the study. "We've also gained new insights into how cell cooperation can be stably maintained in biology. It is much more straightforward to study sociality in bacteria than in animals. The payoffs may be in understanding what drives cooperation and conflict in general, and in developing strategies for infection control,” added Prof. Greenberg.

Related Links:

University of Washington School of Medicine



WATERS CORPORATION

Channels

Genomics/Proteomics

view channel
Image: Mosquitoes are known to infect people and animals with West Nile virus. Studying West Nile virus infection in mice, researchers have shown that the antiviral compound interferon-lambda tightens the blood-brain barrier, making it harder for the virus to invade the brain (Photo courtesy of the CDC – [US] Centers for Disease Control and Prevention).

Interferon-Lambda Prevents West Nile Virus from Crossing the Blood-brain Barrier

The cytokine interferon-lambda prevents West Nile virus from infecting brain cells by reducing transport of large molecules across the blood-brain barrier. Although interferon-lambda [also known as... Read more

Drug Discovery

view channel
Image: Star-like glial cells in red surround alpha-beta plaques in the cortex of a mouse with a model of Alzheimer\'s disease (Photo courtesy of Strittmatter laboratory/Yale University).

Experimental Cancer Drug Reverses Symptoms in Mouse Model of Alzheimer's Disease

An experimental, but clinically disappointing drug for treatment of cancer has been found to be extremely effective in reversing the symptoms of Alzheimer's disease (AD) in a mouse model.... Read more

Lab Technologies

view channel
Image: The gene assembly robot, the GeneTheatre (Photo courtesy of Analytik Jena AG).

Genomic Research Laboratories Await New Compact Liquid Handling System

A small footprint benchtop liquid handler that automates multiple gene assembly tasks and associated procedures such as PCR setup is now available for use by biotech and genomic research laboratories.... Read more

Business

view channel

NanoString and MD Anderson Collaborate on Development of Novel Multi-Omic Expression Profiling Assays for Cancer

The University of Texas MD Anderson Cancer Center (Houston, TX, USA) and NanoString Technologies, Inc. (Seattle, WA, USA) will partner on development of a revolutionary new type of assay—simultaneously profiling gene and protein expression, initially aiming to discover and validate biomarker signatures for immuno-oncology... Read more
 

Events

27 May 2015 - 28 May 2015
02 Jun 2015 - 03 Jun 2015
15 Jun 2015 - 18 Jun 2015
Copyright © 2000-2015 Globetech Media. All rights reserved.