Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Metabolic Incentives to Cooperate Controlled by Bacterial Quorum Sensing

By BiotechDaily International staff writers
Posted on 24 Oct 2012
Scientists have found that bacterial quorum sensing controls when and which cells in a given population will release “public goods” into their environment, and does so in a way that is at least partly achieved by specific metabolic advantage “incentives” for the individual cells.

Quorum sensing (the form of intercellular bacterial communication that enables individual cells to recognize and react to the cell population density of their surrounding community) is a key regulator of the production and release of “public goods” - extracellular products that can be used by any community member. The quorum sensing system is also involved in controlling expression of a few “private goods” - intracellular products not available to other cells. In this study published in the October 12, 2012, issue of the journal Science, the opportunistic lung pathogen Pseudomonas aeruginosa was studied under various metabolic conditions that changed the metabolic cost/benefit balance of producing “public goods” and thereby the competitive balance between “cooperator” cells and “cheater” cells; “cheater” cells being quorum sensing mutants that no longer produce “public goods” in response to increasing population density.

The scientists, from the University of Washington School of Medicine (Seattle, WA), found that quorum sensing–controlled expression of certain intracellular “private goods” can put a metabolic constraint on “cheater” cells and prevent a population collapse. When the researchers manipulated the environment so that the cost of cell cooperation was high and so induced destabilization of cooperation, the “cheater” cells were found to overtake the cooperating producer cells until the population collapsed. The scientists were also able to manipulate environmental conditions to restrict the “cheater” population growth and stabilize quorum sensing (population density) dependent cooperation, thereby providing the “public goods” required to maintain the population and prevent collapse of the community.

Metabolic constraint of social “cheating” provides an explanation for “private goods” regulation by a cooperative system and has general implications for population biology, infection control, and stabilization of quorum-sensing circuits in synthetic biology. The findings also provide additional indication of the potential for developing antibiotic-independent approaches to manage infections. In the future, conditions may be manipulated in order to cause cell populations of dangerous pathogens to collapse - "Perhaps, one day, we'll be able to manipulate infections so that bacterial cooperation is destabilized and infections are resolved," said Dr. Peter Greenberg, UW professor of microbiology and principal author of the study. "We've also gained new insights into how cell cooperation can be stably maintained in biology. It is much more straightforward to study sociality in bacteria than in animals. The payoffs may be in understanding what drives cooperation and conflict in general, and in developing strategies for infection control,” added Prof. Greenberg.

Related Links:

University of Washington School of Medicine



comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: This novel, flexible film that can react to light is a promising step toward an artificial retina (Photo courtesy of the American Chemical Society).

Novel Nanofilm May Be Artificial Retina Precursor

Researchers have used advanced nanotechnology techniques to develop a light-sensitive film that has potential for future artificial retina applications. Investigators at the Hebrew University of Jerusalem... Read more

Drug Discovery

view channel
Image: Disruption and removal of malaria parasites by the experimental drug (+)-SJ733 (Photo courtesy of the University of California, San Francisco).

Experimental Antimalaria Drug Induces the Immune System to Destroy Infected Red Blood Cells

An experimental drug for the treatment of malaria was found to induce morphological changes in infected erythrocytes that enabled the immune system to recognize and eliminate them. Investigators at... Read more

Business

view channel

R&D Partnership Initiated to Reduce Development Time for New Drugs

nanoPET Pharma, GmbH (Berlin, Germany) signed an open-ended framework contract with the international pharmaceutical company Boehringer Ingelheim (Ridgefield, CT, USA). By developing customized contrast agents for research in both basic and preclinical studies, nanoPET Pharma will contribute to the enhancement of Boehringer... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.