Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Events

06 Jun 2016 - 09 Jun 2016
22 Jun 2016 - 24 Jun 2016
04 Jul 2016 - 06 Jul 2016

Nobel Prize Awarded for Fundamental Discoveries About G-protein-Coupled Receptors and Cellular Signaling

By BiotechDaily International staff writers
Posted on 16 Oct 2012
Print article
Image: 2012 Chemistry Nobel laureate Prof. Robert J. Lefkowitz (Photo courtesy of the American Society for Pharmacology and Experimental Therapeutics).
Image: 2012 Chemistry Nobel laureate Prof. Robert J. Lefkowitz (Photo courtesy of the American Society for Pharmacology and Experimental Therapeutics).
Image: 2012 Chemistry Nobel laureate Prof. Brian K. Kobilka (Photo courtesy of the Nobel Foundation).
Image: 2012 Chemistry Nobel laureate Prof. Brian K. Kobilka (Photo courtesy of the Nobel Foundation).
The 2012 Nobel Prize for Chemistry jointly awarded to scientists Robert J. Lefkowitz and Brian K. Kobilka recognizes the discovery of G-protein-coupled receptors (GPCRs) and fundamental discoveries about their molecular structure, functional roles, and signaling mechanisms. The prize also reflects recognition that much progress made in medical therapy has been specifically based on knowledge about this large family of signaling receptors.

Until the mid-20th century, scientists only knew that certain molecules, such as hormones, in some way enabled cells to sense certain environmental conditions and initiate powerful biological effects. It was suspected that cell surfaces contained some kind of receptors for these extracellular molecules, but what they consisted of and how they functioned remained obscure. Prof. Lefkowitz, currently a Howard Hughes Medical Institute (Chevy Chase, MD, USA) investigator and professor at Duke University Medical Center (Durham, NC, USA), began by using radioactive, iodine isotope labeled hormones to trace cell surface receptors. By 1968, his team unveiled several receptors, among them the β-adrenergic receptor for adrenalin, which the team extracted from the cell membrane and gained an initial understanding of how it works.

The team achieved its next big step during the 1980s. The newly recruited Brian Kobilka, now professor at Stanford University School of Medicine (Stanford, CA, USA), accepted and, with a creative approach, succeeded in the challenge to isolate from the human genome and sequence the gene for the β-adrenergic receptor. They and other researchers eventually discovered that there is a large family of similar receptors, commonly referred to as the GPCR related family (less commonly, the 7TM [7 transmembrane] receptor family). Over a thousand known genes presently make up this family and include receptors for light, taste, odor, adrenalin, histamine, dopamine, and serotonin. In addition to regulation by ligand molecules, other researchers have found a few GPCRs that are also highly regulated by voltage change signals, such as the voltage-dependent regulation of at least two GPCRs involved in the fast-kinetics form of neurotransmitter release, the M2-muscarinic receptor (M2R) in acetylcholine release and the glutamatergic receptor (e.g., mGluR3) in glutamate release. More recently, by 2011, the research team led by Prof. Kobilka achieved another challenging breakthrough – they captured a structural image of the β-adrenergic receptor at the moment of hormone activation.

Prof. Lefkowitz’s laboratory also discovered two families of proteins that desensitize GPCRs, the GPCR kinases (GRKs) and the arrestins; a finding that has helped scientists understand how receptors become tolerant to certain drugs. About doing research, Prof. Lefkowitz says it "continuously renews itself and always feels fresh. I come to work every day with a sense of great anticipation and curiosity about what new discoveries and insights will come our way." The studies by Prof. Lefkowitz and Prof. Kobilka have turned out to be crucial for understanding how GPCRs function as well as for advancement of medical therapy - many important pharmaceutical drugs achieve their effects through GPCRs due to the critical roles of these receptors in almost all physiological processes.

Related Links:

Duke University Medical Center
Howard Hughes Medical Institute
Stanford University School of Medicine



Print article

Channels

Genomics/Proteomics

view channel
Image: Follicular helper T-cells (TFH cells, shown in blue) play a crucial role in the maturation of antibody-producing B-cells (shown in green). Activated B-cells give rise germinal centers (shown in red), where mature B-cells proliferate and produce highly specific antibodies against pathogens. Top left: normal germinal center in a mouse tonsil. All others: Germinal centers fail to form when the interaction between ICOS and TBK1 is interrupted (Photo courtesy of Dr. Kok-Fai Kong, La Jolla Institute for Allergy and Immunology).

Molecular Pathway Controlling High-affinity Antibody Production Identified

A molecular pathway has been identified that controls formation of follicular helper T-cells (TFH cells) germinal centers and production of high-affinity antibodies through interaction with the inducible... Read more

Drug Discovery

view channel

Experimental Small-Molecule Anticancer Drug Blocks RAS-binding Domains

The experimental small-molecule anticancer drug rigosertib was shown to block tumor growth by acting as an RAS-mimetic and interacting with the RAS binding domains of RAF kinases, resulting in their inability to bind to RAS, which inhibited the RAS-RAF-MEK pathway. Oncogenic activation of RAS genes due to point mutations... Read more

Lab Technologies

view channel

Huge Modifiable Biomedical Database to Be Available on the Wikidata Site

Genome researchers are exploiting the power of the open Internet community Wikipedia database to create a comprehensive resource for geneticists, molecular biologists, and other interested life scientists. While efficiency in generating scientific data improves almost daily, applying meaningful relationships between... Read more

Business

view channel

European Biotech Agreement to Promote Antigen-Drug Conjugation Technology

Two European biotech companies have joined forces to exploit and commercialize an innovative, site-specific ADC (antigen-drug conjugate) conjugation technology. ProBioGen (Berlin, Germany), a company specializing in the development and manufacture of complex glycoproteins and Eucodis Bioscience (Vienna, Austria), a... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.