Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Nobel Prize Awarded for Fundamental Discoveries About G-protein-Coupled Receptors and Cellular Signaling

By BiotechDaily International staff writers
Posted on 16 Oct 2012
Image: 2012 Chemistry Nobel laureate Prof. Robert J. Lefkowitz (Photo courtesy of the American Society for Pharmacology and Experimental Therapeutics).
Image: 2012 Chemistry Nobel laureate Prof. Robert J. Lefkowitz (Photo courtesy of the American Society for Pharmacology and Experimental Therapeutics).
Image: 2012 Chemistry Nobel laureate Prof. Brian K. Kobilka (Photo courtesy of the Nobel Foundation).
Image: 2012 Chemistry Nobel laureate Prof. Brian K. Kobilka (Photo courtesy of the Nobel Foundation).
The 2012 Nobel Prize for Chemistry jointly awarded to scientists Robert J. Lefkowitz and Brian K. Kobilka recognizes the discovery of G-protein-coupled receptors (GPCRs) and fundamental discoveries about their molecular structure, functional roles, and signaling mechanisms. The prize also reflects recognition that much progress made in medical therapy has been specifically based on knowledge about this large family of signaling receptors.

Until the mid-20th century, scientists only knew that certain molecules, such as hormones, in some way enabled cells to sense certain environmental conditions and initiate powerful biological effects. It was suspected that cell surfaces contained some kind of receptors for these extracellular molecules, but what they consisted of and how they functioned remained obscure. Prof. Lefkowitz, currently a Howard Hughes Medical Institute (Chevy Chase, MD, USA) investigator and professor at Duke University Medical Center (Durham, NC, USA), began by using radioactive, iodine isotope labeled hormones to trace cell surface receptors. By 1968, his team unveiled several receptors, among them the β-adrenergic receptor for adrenalin, which the team extracted from the cell membrane and gained an initial understanding of how it works.

The team achieved its next big step during the 1980s. The newly recruited Brian Kobilka, now professor at Stanford University School of Medicine (Stanford, CA, USA), accepted and, with a creative approach, succeeded in the challenge to isolate from the human genome and sequence the gene for the β-adrenergic receptor. They and other researchers eventually discovered that there is a large family of similar receptors, commonly referred to as the GPCR related family (less commonly, the 7TM [7 transmembrane] receptor family). Over a thousand known genes presently make up this family and include receptors for light, taste, odor, adrenalin, histamine, dopamine, and serotonin. In addition to regulation by ligand molecules, other researchers have found a few GPCRs that are also highly regulated by voltage change signals, such as the voltage-dependent regulation of at least two GPCRs involved in the fast-kinetics form of neurotransmitter release, the M2-muscarinic receptor (M2R) in acetylcholine release and the glutamatergic receptor (e.g., mGluR3) in glutamate release. More recently, by 2011, the research team led by Prof. Kobilka achieved another challenging breakthrough – they captured a structural image of the β-adrenergic receptor at the moment of hormone activation.

Prof. Lefkowitz’s laboratory also discovered two families of proteins that desensitize GPCRs, the GPCR kinases (GRKs) and the arrestins; a finding that has helped scientists understand how receptors become tolerant to certain drugs. About doing research, Prof. Lefkowitz says it "continuously renews itself and always feels fresh. I come to work every day with a sense of great anticipation and curiosity about what new discoveries and insights will come our way." The studies by Prof. Lefkowitz and Prof. Kobilka have turned out to be crucial for understanding how GPCRs function as well as for advancement of medical therapy - many important pharmaceutical drugs achieve their effects through GPCRs due to the critical roles of these receptors in almost all physiological processes.

Related Links:

Duke University Medical Center
Howard Hughes Medical Institute
Stanford University School of Medicine



Channels

Genomics/Proteomics

view channel
Image: Biopsy of small bowel showing celiac disease manifested by blunting of villi, crypt hyperplasia, and lymphocyte infiltration of crypts (Photo courtesy of Wikimedia Commons).

Reduced Elafin Levels Associated with Celiac Disease Bowel Inflammation

Levels of the enzyme elafin, an endogenous serine protease inhibitor, were lower in the small intestinal epithelium of patients with active celiac disease (CD) as compared to similar tissue from control patients.... Read more

Drug Discovery

view channel

Retinoic Acid Prevents Precancerous Breast Cells from Progressing to Full-Blown Cancer

Retinoic acid, a derivative of vitamin A, was found to prevent pre-cancerous breast cells from progressing to full-blown cancer but did not have any effect on breast tumor cells. Investigators at Thomas Jefferson University (Philadelphia, PA, USA) worked with a novel breast cancer model that had been developed by treating... Read more

Therapeutics

view channel

Cytokine Identified That Causes Mucositis in Cancer Therapy Patients

The action of the cytokine interleukin 1-beta (IL-1beta) has been found to underlie the onset of mucositis, a common, severe side effect of chemotherapy and irradiation of cancer patients. Mucositis occurs as a result of cell death in reaction to chemo- or radiotherapy. The mucosal lining of the mouth becomes thin, may... Read more

Business

view channel

Analytical Sciences Trade Fair Declared a Rousing Success

Organizers of this year's 24th "analytica" biosciences trade fair have reported significant increases in both the number of visitors and exhibitors compared to the 2012 event. The analytica trade fair for laboratory technology, analysis, and biotechnology has been held at the Munich (Germany) Trade Fair Center every... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.