Features | Partner Sites | Information | LinkXpress
Sign In
JIB
GLOBETECH PUBLISHING
GLOBETECH PUBLISHING

Prospective Antidementia Drug Improves Brain Function

By BiotechDaily International staff writers
Posted on 15 Oct 2012
A new antidementia drug candidate has been found to be highly active in creating new neuronal connections and improving the cognitive function of rats with Alzheimer’s-like mental impairment.

Researchers at Washington State University (WSU; Pullman, WA, USA) have developed a new compound, named Dihexa, designed to repair damage that has already occurred and thereby recover lost brain function. This is a significant departure from current treatments for diseases such as Alzheimer’s, treatments that only slow the process of cell death or inhibit the neurotransmitter cholinesterase. Also, the Pharmaceutical Research and Manufacturers of America (PhRMA) reported that only 3 of 104 possible treatments have been approved in the past 13 years, a 34 to 1 ratio of setbacks to successes.

Joe Harding, professor at the WSU College of Veterinary Medicine, Jay Wright, professor at the WSU College of Arts and Sciences, and other WSU colleagues, reported their findings on October 10, 2012, in the early online section of the Journal of Pharmacology and Experimental Therapeutics. Prof. Harding designed a smaller version of the peptide angiotensin IV. Unlike the original peptide and early candidate molecules based on it, the new analog, Dihexa, was found to be both stable and able to cross the blood-brain barrier. It can also move from the gut into the blood and so could be taken orally in pill form.

The WSU team tested Dihexa on several dozen rats treated with scopolamine. Typically, a rat treated with scopolamine will not learn the location of a submerged platform in a water tank, orienting with cues outside the tank. After receiving Dihexa, all rats learned the task whether receiving the drug orally, by injection, or directly into the brain. Similar results were observed where a smaller group of old rats performed like young rats after treatment; however, while these results were statistically valid, studies with larger test groups will be needed to check the finding.

The "gold standard” compound for creating neuronal connections is brain-derived neurotrophic factor (BDNF). In bench assays using living nerve cells to monitor new neuronal connections, Dihexa was seven orders of magnitude more powerful than BDNF, which itself has yet to be effectively developed for therapeutic use. "We quickly found out that this molecule was [very highly] active,” said Prof. Harding. These results further suggest that Dihexa or molecules like it may also have applications for other neurodegenerative diseases or brain traumas where neuronal connections are lost. Development of Dihexa for human use will begin after safety testing and US Food and Drug Administration approval is obtained for clinical trials.

Related Links:

Washington State University




comments powered by Disqus

Channels

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: The DrySyn MULTI converts any standard hotplate stirrer into a high performance reaction block (Photo courtesy of Asynt).

New Reaction Vessel Heating System Is Cleaner and Safer

Biotech and other life science researchers can create a safer, cleaner, and more efficient working environment in their laboratories by switching from oil bath-based heating of reaction vessels to a new... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.