Features | Partner Sites | Information | LinkXpress
Sign In
PURITAN MEDICAL
Demo Company
GLOBETECH PUBLISHING LLC

Prospective Antidementia Drug Improves Brain Function

By BiotechDaily International staff writers
Posted on 15 Oct 2012
A new antidementia drug candidate has been found to be highly active in creating new neuronal connections and improving the cognitive function of rats with Alzheimer’s-like mental impairment.

Researchers at Washington State University (WSU; Pullman, WA, USA) have developed a new compound, named Dihexa, designed to repair damage that has already occurred and thereby recover lost brain function. This is a significant departure from current treatments for diseases such as Alzheimer’s, treatments that only slow the process of cell death or inhibit the neurotransmitter cholinesterase. Also, the Pharmaceutical Research and Manufacturers of America (PhRMA) reported that only 3 of 104 possible treatments have been approved in the past 13 years, a 34 to 1 ratio of setbacks to successes.

Joe Harding, professor at the WSU College of Veterinary Medicine, Jay Wright, professor at the WSU College of Arts and Sciences, and other WSU colleagues, reported their findings on October 10, 2012, in the early online section of the Journal of Pharmacology and Experimental Therapeutics. Prof. Harding designed a smaller version of the peptide angiotensin IV. Unlike the original peptide and early candidate molecules based on it, the new analog, Dihexa, was found to be both stable and able to cross the blood-brain barrier. It can also move from the gut into the blood and so could be taken orally in pill form.

The WSU team tested Dihexa on several dozen rats treated with scopolamine. Typically, a rat treated with scopolamine will not learn the location of a submerged platform in a water tank, orienting with cues outside the tank. After receiving Dihexa, all rats learned the task whether receiving the drug orally, by injection, or directly into the brain. Similar results were observed where a smaller group of old rats performed like young rats after treatment; however, while these results were statistically valid, studies with larger test groups will be needed to check the finding.

The "gold standard” compound for creating neuronal connections is brain-derived neurotrophic factor (BDNF). In bench assays using living nerve cells to monitor new neuronal connections, Dihexa was seven orders of magnitude more powerful than BDNF, which itself has yet to be effectively developed for therapeutic use. "We quickly found out that this molecule was [very highly] active,” said Prof. Harding. These results further suggest that Dihexa or molecules like it may also have applications for other neurodegenerative diseases or brain traumas where neuronal connections are lost. Development of Dihexa for human use will begin after safety testing and US Food and Drug Administration approval is obtained for clinical trials.

Related Links:

Washington State University




Channels

Genomics/Proteomics

view channel
Image: An activated PTEN dimer that contains two non-mutant proteins (A) can transform the functional lipid (D) on the cellular membrane (E) into a chemical form that tunes down cancer predilection. Dimers that contain a mutated protein (B) or PTEN monomers cannot transform the functional lipid (Photo courtesy of Carnegie Mellon University).

PTEN Requires a Stable Dimer Configuration to Effectively Suppress Tumor Growth

Molecular structural analysis has shown that the PTEN (phosphatase and tensin homolog) tumor suppressor can function effectively only when two wild-type alleles are present to form a stable dimer that... Read more

Lab Technologies

view channel
Image: The VIAFLO Assist pipette adapter (Photo courtesy of INTEGRA Biosciences).

Pipetting Assistant Helps Prevent Repetitive Strain Injuries

A powerful pipetting accessory makes life easier for technicians in both clinical and research laboratories. Prolonged and repetitive pipetting sessions bear the risk of strain and fatigue, often resulting... Read more

Business

view channel

MS Drug Deal to Net More Than USD 1 Billion

A pharmaceutical company based in Switzerland has purchased the remaining rights to the multiple sclerosis drug Ofatumumab, which will allow it to continue development of the compound for treating relapsing remitting multiple sclerosis (RRMS) and similar autoimmune diseases. Novartis (Basel, Switzerland) recently announced... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.