Features | Partner Sites | Information | LinkXpress
Sign In
BioConferenceLive
GLOBETECH PUBLISHING
JIB

Decisive Role in Cell Division Identified for Centrosomal Protein

By BiotechDaily International staff writers
Posted on 30 Aug 2012
Image: The mitotic spindle (microtubules in red, DNA in blue) and the centrosomes (in yellow). (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
Image: The mitotic spindle (microtubules in red, DNA in blue) and the centrosomes (in yellow). (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
Image: Depicted are four cells (DNA in blue and a centrosomal protein in red). The cell on the left is in mitosis - observe how the DNA condenses in the chromosomes and the two centrosomes separate and accumulate proteins (maturation) (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
Image: Depicted are four cells (DNA in blue and a centrosomal protein in red). The cell on the left is in mitosis - observe how the DNA condenses in the chromosomes and the two centrosomes separate and accumulate proteins (maturation) (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
The answer to an elusive question about signaling in chromosome distribution and separation has been provided by the discovery of a key role for a centrosomal protein kinase. The kinase also has potential importance as a new candidate among cell division factors being targeted in the development of drug treatments for cancer.

The study, headed by principal researchers Joan Roig, PhD, at the Institute for Research in Biomedicine (IRB Barcelona; Barcelona, Spain) and Isabelle Vernos, PhD, at the Center for Genomic Regulation (CRG; Barcelona, Spain) highlights the protein kinase Nek9 as an essential and decisive factor in a pathway involved in ensuring efficient and accurate movement of chromosomes during cell division. γ-tubulin recruitment to and accumulation at the centrosome during the centrosome maturation stage of mitosis is known to depend on the adaptor protein NEDD1/GCP-WD and to be controlled by the kinase Plk1. Surprisingly, and although Plk1 binds and phosphorylates NEDD1 at multiple sites, the mechanism by which this kinase promotes centrosomal recruitment of γ-tubulin has remained elusive. Using Xenopus egg extracts and mammalian cells, the scientists found that Nek9, a kinase required for normal mitotic progression and spindle organization, phosphorylates NEDD1, driving its recruitment and thereby that of γ-tubulin to the centrosome. This role of Nek9 requires its activation by Plk1-dependent phosphorylation.


Errors in chromosome distribution cause many spontaneous miscarriages, some genetic defects such as trisomies, and are related to the development of tumors. Nek9 exerts its action between two molecules, Plk1 and Eg5, of interest as antitumoral agents and for which inhibitors are already in advanced stages of clinical trials. Nek9 could well be added to the list of cell division target candidates. “Through this study we demonstrate that a fourth family of proteins, namely NIMA and specifically Nek9, exert functions in cell division as important as those undertaken by the widely studied CDK (cdk1), Polo (Plk1) and Aurora (Aurora A and B) kinases”, explains Dr. Roig. “Without Nek9 the spindle would not form properly and cell division would be hindered, the cells would die or cause aneuploidies, with unequal distribution of chromosomes, an event that is common in tumors,” explains Dr. Vernos. The pharmaceutical industry is currently testing new drugs that inhibit Plk1, Eg5, and Aurora. “We are doing double-edged work: we describe how proteins involved in the initial stages of cell division are related in time and space, and in parallel we highlight the possible therapeutic tools, whether markers of disease or antimitotic agents, that can stop division and tumor growth”, says Dr. Roig.

The findings were published July 19, 2012, in the journal Current Biology.

Related Links:

Institute for Research in Biomedicine, Barcelona
Center for Genomic Regulation




comments powered by Disqus

Channels

Drug Discovery

view channel
Image: The European Commission has approved the use of Avastin combined with chemotherapy as a treatment for women with recurrent ovarian cancer (Photo courtesy of Genentech).

Drug for Treatment of Platinum Resistant Recurrent Ovarian Cancer Approved for Use in Europe

For the first time in more than 15 years the European Commission (EC) has approved a new therapeutic option for the most difficult to treat form of ovarian cancer. Ovarian cancer causes more deaths... Read more

Therapeutics

view channel
Image: This type of electronic pacemaker could become obsolete if induction of biological pacemaker cells by gene therapy proves successful (Photo courtesy of Wikimedia Commons).

Gene Therapy Induces Functional Pacemaker Cells in Pig Heart Failure Model

Cardiovascular disease researchers working with a porcine heart failure model have demonstrated the practicality of using gene therapy to replace implanted electronic pacemakers to regulate heartbeat.... Read more

Lab Technologies

view channel
Image: Neurons (greenish yellow) attach to silk-based scaffold (blue) creating functional networks throughout the scaffold pores (dark areas) (Photo courtesy of Tufts University).

Functional 3D Brain-Like Tissue Model Bioengineered

Researchers recently reported on the development of the first complex, three-dimensional (3D) model comprised of brain-like cortical tissue that displays biochemical and electrophysiologic responses, and... Read more

Business

view channel

Global Computational Biology Sector Expected to Reach over USD 4 Billion by 2020

The global market for computational biology is expected to reach USD 4.285 billion by 2020 growing at a compound annual growth rate (CAGR) of 21.1%, according to new market research. Steady surge in the usage and application of computational biology for bioinformatics R&D programs designed for sequencing genomes... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.