Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
Micromedic Technologies

Decisive Role in Cell Division Identified for Centrosomal Protein

By BiotechDaily International staff writers
Posted on 30 Aug 2012
Print article
Image: The mitotic spindle (microtubules in red, DNA in blue) and the centrosomes (in yellow). (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
Image: The mitotic spindle (microtubules in red, DNA in blue) and the centrosomes (in yellow). (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
Image: Depicted are four cells (DNA in blue and a centrosomal protein in red). The cell on the left is in mitosis - observe how the DNA condenses in the chromosomes and the two centrosomes separate and accumulate proteins (maturation) (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
Image: Depicted are four cells (DNA in blue and a centrosomal protein in red). The cell on the left is in mitosis - observe how the DNA condenses in the chromosomes and the two centrosomes separate and accumulate proteins (maturation) (Photo courtesy of Dr. S. Sdelci, IRB Barcelona).
The answer to an elusive question about signaling in chromosome distribution and separation has been provided by the discovery of a key role for a centrosomal protein kinase. The kinase also has potential importance as a new candidate among cell division factors being targeted in the development of drug treatments for cancer.

The study, headed by principal researchers Joan Roig, PhD, at the Institute for Research in Biomedicine (IRB Barcelona; Barcelona, Spain) and Isabelle Vernos, PhD, at the Center for Genomic Regulation (CRG; Barcelona, Spain) highlights the protein kinase Nek9 as an essential and decisive factor in a pathway involved in ensuring efficient and accurate movement of chromosomes during cell division. γ-tubulin recruitment to and accumulation at the centrosome during the centrosome maturation stage of mitosis is known to depend on the adaptor protein NEDD1/GCP-WD and to be controlled by the kinase Plk1. Surprisingly, and although Plk1 binds and phosphorylates NEDD1 at multiple sites, the mechanism by which this kinase promotes centrosomal recruitment of γ-tubulin has remained elusive. Using Xenopus egg extracts and mammalian cells, the scientists found that Nek9, a kinase required for normal mitotic progression and spindle organization, phosphorylates NEDD1, driving its recruitment and thereby that of γ-tubulin to the centrosome. This role of Nek9 requires its activation by Plk1-dependent phosphorylation.


Errors in chromosome distribution cause many spontaneous miscarriages, some genetic defects such as trisomies, and are related to the development of tumors. Nek9 exerts its action between two molecules, Plk1 and Eg5, of interest as antitumoral agents and for which inhibitors are already in advanced stages of clinical trials. Nek9 could well be added to the list of cell division target candidates. “Through this study we demonstrate that a fourth family of proteins, namely NIMA and specifically Nek9, exert functions in cell division as important as those undertaken by the widely studied CDK (cdk1), Polo (Plk1) and Aurora (Aurora A and B) kinases”, explains Dr. Roig. “Without Nek9 the spindle would not form properly and cell division would be hindered, the cells would die or cause aneuploidies, with unequal distribution of chromosomes, an event that is common in tumors,” explains Dr. Vernos. The pharmaceutical industry is currently testing new drugs that inhibit Plk1, Eg5, and Aurora. “We are doing double-edged work: we describe how proteins involved in the initial stages of cell division are related in time and space, and in parallel we highlight the possible therapeutic tools, whether markers of disease or antimitotic agents, that can stop division and tumor growth”, says Dr. Roig.

The findings were published July 19, 2012, in the journal Current Biology.

Related Links:

Institute for Research in Biomedicine, Barcelona
Center for Genomic Regulation




Print article

Channels

Genomics/Proteomics

view channel
Image: Molecular model of E3 ubiquitin ligase (green), E2 ubiquitin enzyme (orange), \"activated ubiquitin\" (cyan), and \"allosteric ubiquitin\" (blue) (Photo courtesy of Dr. Bernhard Lechtenberg, Sanford Burnham Prebys Medical Discovery Institute).

Researchers Resolve Molecular Structure of Critical Ubiquitin-Binding Enzyme

The molecular structure of a protein complex critically involved in diverse cellular functions such as cell signaling, DNA repair, and mounting anti-inflammatory and immune responses has been elucidated... Read more

Drug Discovery

view channel
Image: Naturally occurring clay from Kisameet Bay, Canada, exhibits potent antibacterial activity against multidrug-resistant pathogens (Photo courtesy of Kisameet Glacial Clay Inc.).

Antibiotic Resistant Bacteria Succumb to Treatment with Unique Natural Clay

A team of Canadian medical microbiologists has demonstrated the potential use of a unique type of natural clay for treating pathogenic bacteria that have become resistant to the commonly used antibiotics.... Read more

Business

view channel

Purchase Agreement to Boost Ebola Vaccine Development

A deal to help boost development of a vaccine to protect against Ebolavirus infection was finalized at the recent Davos Conference in Switzerland. Gavi (Geneva, Switzerland), the global alliance for vaccines and immunizations, announced that it would spend five million USD to purchase the Ebola vaccine under development... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.