Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH MEDIA
GLOBETECH PUBLISHING LLC

Novel Technique Improves Investigation of Interactions Between HIV and Malaria Parasite

By BiotechDaily International staff writers
Posted on 27 Aug 2012
A new video article describes a novel technique used to study the interactions between HIV-1 and Plasmodium falciparum in cultured human cells, allowing scientists to explore different parameters of coinfection by the two microbes.

Due to their extensive overlap in some developing regions, especially Sub-Saharan Africa, coinfections with malaria and HIV-1 are common, but the interplay between the two diseases is poorly understood and a systematic analysis of the interactions in different relevant human primary cell populations is critically needed. Each disease affects the immune system differently and by studying coinfection at different phases of each disease in vitro, scientists can better understand how different stages of malaria infection and HIV reproduction affect the onset and severity of the other disease.

In this study, an in vitro Plasmodium-HIV-1 coinfection model was developed and used to investigate the impact of P. falciparum-infected red blood cells on the HIV-1 replicative cycle in human primary monocyte-derived macrophages (MDMs). The impact of parasite exposure on HIV-1 transcriptional/translational events was monitored by using single cycle pseudotyped viruses in which a luciferase reporter gene has replaced the Env gene, while the effect on the quantity of progeny virus released by the infected macrophages is determined by measuring the HIV-1 capsid protein p24 by ELISA in cell supernatants. The researchers observed that exposure of P. falciparum to MDMs, decreases their susceptibility to HIV-1 infection, exerting a clear detrimental effect on the HIV-1 replicative cycle in macrophages (not excluding the possibility of other effects under different conditions).

The new technique, developed and applied by the laboratory led by Dr. David Richard of the Centre Hospitalier Universitaire de Quebec (CHUQ; Quebec City, Quebec, CA; www.chuq.qc.ca), was published August 15, 2012, in the online video Journal of Visualized Experiments (JoVE). "By publishing in JoVE, you really see what is happening in the experiment. The visual representation helps succinctly explain a long procedure, and gives you a fuller picture of the schematic complexity," said Dr. Richards. He hopes that this publication will give the scientific community an important additional tool to look at the interactions of the coinfection encounter on a cellular level and to more thoroughly dissect these interactions in a simplified system. This versatile system can also be adapted to monitor other factors and to use other primary cell types susceptible to HIV-1 infection. "Publication of the protocol in JoVE will allow researchers around the world to see a detailed demonstration of this system, which will help bring the technology to their laboratories," said JoVE editor Dr. Charlotte Frank Sage.

Related Links:

Centre Hospitalier Universitaire de Quebec
Journal of Visualized Experiments




Channels

Genomics/Proteomics

view channel
Image: The photo shows a mouse pancreatic islet as seen by light microscopy. Beta cells can be recognized by the green insulin staining. Glucagon is labeled in red and the nuclei in blue (Photo courtesy of Wikimedia Commons).

Regenerative Potential Is a Trait of Mature Tissues, Not an Innate Feature of Newly Born Cells

Diabetes researchers have found that the ability of insulin-producing beta cells to replicate and respond to elevated glucose concentrations is absent in very young animals and does not appear until after weaning.... Read more

Drug Discovery

view channel
Image: Wafers like the one shown here are used to create “organ-on-a-chip” devices to model human tissue (Photo courtesy of Dr. Anurag Mathur, University of California, Berkeley).

Human Heart-on-a-Chip Cultures May Replace Animal Models for Drug Development and Safety Screening

Human heart cells growing in an easily monitored silicon chip culture system may one day replace animal-based model systems for drug development and safety screening. Drug discovery and development... Read more

Biochemistry

view channel
Image:  Model depiction of a novel cellular mechanism by which regulation of cryptochromes Cry1 and Cry2 enables coordination of a protective transcriptional response to DNA damage caused by genotoxic stress (Photo courtesy of the journal eLife, March 2015, Papp SJ, Huber AL, et al.).

Two Proteins Critical for Circadian Cycles Protect Cells from Mutations

Scientists have discovered that two proteins critical for maintaining healthy day-night cycles also have an unexpected role in DNA repair and protecting cells against genetic mutations that could lead... Read more

Business

view channel

Roche Acquires Signature Diagnostics to Advance Translational Research

Roche (Basel, Switzerland) will advance translational research for next generation sequencing (NGS) diagnostics by leveraging the unique expertise of Signature Diagnostics AG (Potsdam, Germany) in biobanks and development of novel NGS diagnostic assays. Signature Diagnostics is a privately held translational oncology... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.