Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL

Insulin Resistance Also Mediated by White Blood Cells

By BiotechDaily International staff writers
Posted on 13 Aug 2012
Image: False-color scanning electron micrograph (SEM) of a neutrophil (Photo courtesy of UC San Diego School of Medicine).
Image: False-color scanning electron micrograph (SEM) of a neutrophil (Photo courtesy of UC San Diego School of Medicine).
Researchers have now found that neutrophils play a role in mediating the development of insulin resistance, the central characteristic of type 2 diabetes. The discovery also provides a potential new treatment target.

Using live mouse models as well as cultured liver and fat cells, a study team based at the University of California, San Diego, School of Medicine (La Jolla, CA, USA) discovered that an enzyme secreted by neutrophils called neutrophil elastase (NE) impairs insulin signaling and boosts resistance. Conversely, deletion of NE in obese mice fed a high-fat diet improved insulin sensitivity. “These results are largely unexpected. Although several immune cells have been established in the etiology of insulin resistance, the role of neutrophils in this process has remained unclear until now,” said Da Young Oh, co-author and assistant project scientist in the laboratory of study leader Jerrold M. Olefsky, MD and professor of medicine.

Chronic low-grade inflammation is an important cause of systemic insulin resistance. Neutrophils are the first immune cells to respond to tissue inflammation and can promote chronic inflammation by helping to recruit additional white blood cells - macrophages. Oh noted that neutrophils were considered to be “transient infiltrates” incapable of sustaining chronic, low-grade inflammation. “Our studies now suggest neutrophils possess powerful immune modulatory effects,” Oh said. Specifically, neutrophils use NE to activate a signaling pathway that triggers macrophages to secrete proinflammatory cytokines. NE degrades IRS1, a key protein in the insulin-signaling pathway in both liver and fat cells. The scientists noted that although NE has been shown to degrade this protein in lung cancer cells, the effect on insulin target tissues such as liver and adipose is striking.

The insulin-mediating role of neutrophils makes them a new target for developing treatments of insulin resistance in particular and diabetes in general. “One could, in theory, take an NE activity inhibitory approach to reverse or improve insulin resistance,” Oh said, noting that NE inhibiting drugs are already used for treatment of emphysema in Japan and are being tested in the United States for both emphysema and type 1 diabetes.

The findings have been reported in the August 5, 2012, advance online edition of the journal Nature Medicine.

Related Links:

University of California, San Diego, School of Medicine



Channels

Genomics/Proteomics

view channel
Image: The photomicrograph shows the head of a mouse embryo in which the pericytes are visible as blue dots along the blood vessel (Photo courtesy of the University of Gothenburg).

Genetically Engineered Mouse Model Reveals Key to Formation of the Blood-Brain Barrier

Use of a mouse model that had been genetically engineered to lack the gene that encodes the forkhead transcription factor Foxf2 has helped to explain how pericytes, cells that line the capillaries, form... Read more

Business

view channel

Biopharm Startup to Commercialize Antibody Therapy for Drug Resistant Cancers

A biopharm startup company has licensed the rights to commercialize an antibody-based approach for treatment of drug resistant cancers. The new company, CadheRx Therapeutics (La Jolla, CA, USA), entered into a licensing agreement with Stony Brook University (NY, USA) to develop and market an anticancer technology derived... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.