Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Boosting Blood System Protein Complex Protects Against Radiation Toxicity

By BiotechDaily International staff writers
Posted on 02 Jul 2012
New research has shown that boosting a protein pathway in the body’s blood-making system protects laboratory mice from otherwise lethal radiation poisoning.

Scientists reported findings from a multi-institutional study--posted online June 23, 2012, in the journal Nature Medicine--that open the possibility for new treatments against radiation toxicity during cancer treatment or environmental exposures--such as in a nuclear explosion or accident.

By identifying a target-specific intervention to protect the hematopoietic system against radiation toxicity, the study addresses a largely unmet challenge, according to the researchers. “These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd [thrombomodulin] or aPC [activated protein C] might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation,” the scientists wrote in their article. “Recombinant human aPC has undergone extensive clinical testing in patients, and recombinant soluble human Thbd is currently being investigated for efficacy in antithrombotic therapy in humans. Our data encourage the further evaluation of these proteins for their radio-mitigating activities.”

The study revealed an earlier unknown function of the Thbd-aPC pathway in radiation mitigation. The pathway is typically known for its ability to prevent the formation of blood clots and help the body fight infections. The researchers found the pathway helps blood cells in the bone marrow recover from injury caused by radiation exposure. They demonstrated that pharmacologic boosting of this pathway with two drugs assessed for the treatment of thrombosis or infection (recombinant Thbd and aPC, respectively) can be utilized in mice to prevent death caused by exposure to lethal doses of radiation.

In all cases of treatment with recombinant soluble Thbd or aPC, the result was faster recovery of hematopoietic progenitor cell activity in bone marrow and a decrease in the harmful effects of lethal total body irradiation. When treatment was with aPC, these benefits occurred even when treatment was delayed for 24 hours. The scientists cautioned that their study involves early laboratory research in mice, so it remains to be assessed how the findings may translate to human treatment. Researchers also need to determine precisely why the protective function of the targeted Thbd-aPC protein pathway appears to function so well in mice.

Researchers noted that the protective benefits of Thbd-aPC happened only in vivo in irradiated mouse models. The researchers reported that overexpressed Thbd in irradiated laboratory cell cultures did not offer the same protective benefits, as the cells did not survive. This indicates the protective benefits of Thbd on blood making cells in irradiated mouse models depends on the help of additional cells or molecules in the body, which the researchers are trying to identify in a follow-up study.

The study involves extensive multiscientist collaborations that combined earlier independent lines of research by groups at Cincinnati Children’s Hospital Medical Center (OH, USA) and the University of Ulm (Germany), led by Hartmut Geiger, PhD, division of experimental hematology/cancer biology and the department of dermatology/allergic diseases; the University of Arkansas (Little Rock, USA), led by Martin Hauer-Jensen, MD, PhD, division of radiation Health, the College of Pharmacy and the Central Arkansas Veterans Healthcare System; the Blood Research Institute (Milwaukee, WI, USA), led by Hartmut Weiler, PhD, and The Scripps Research Institute (La Jolla, CA, USA), led by John H. Griffin, PhD, department of molecular and experimental medicine.

The researchers reported that this study reveals a global shift to multi-investigator projects that allow a combination of varied expertise by scientists tackling complicated problems from the standpoint of their respective fields. This approach requires the inclination of investigators to share unpublished data and engage in an open collaboration. The researchers also noted that the study highlights the significant of continued federal funding for cutting-edge research that can benefit human health.

Related Links:
Cincinnati Children’s Hospital Medical Center
University of Ulm
University of Arkansas



comments powered by Disqus

Channels

Genomics/Proteomics

view channel

New Program Encourages Wide Distribution of Genomic Data

A new data sharing program allows genomics researchers and practitioners to analyze, visualize, and share raw sequence data for individual patients or across populations straight from a local browser. The sequencing revolution is providing the raw data required to identify the genetic variants underlying rare diseases... Read more

Drug Discovery

view channel
Image: The nano-cocoon drug delivery system is biocompatible, specifically targets cancer cells, can carry a large drug load, and releases the drugs very quickly once inside the cancer cell. Ligands on the surface of the \"cocoon\" trick cancer cells into consuming it. Enzymes (the “worms\" in this image) inside the cocoon are unleashed once inside the cell, destroying the cocoon and releasing anticancer drugs into the cell (Photo courtesy of Dr. Zhen Gu, North Carolina State University).

Novel Anticancer Drug Delivery System Utilizes DNA-Based Nanocapsules

A novel DNA-based drug delivery system minimizes damage to normal tissues by utilizing the acidic microenvironment inside cancer cells to trigger the directed release of the anticancer drug doxorubicin (DOX).... Read more

Lab Technologies

view channel

Experimental Physicists Find Clues into How Radiotherapy Kills Cancer Cells

A new discovery in experimental physics has implications for a better determination of the process in which radiotherapy destroys cancer cells. Dr. Jason Greenwood from Queen’s University Belfast (Ireland) Center for Plasma Physics collaborated with scientists from Italy and Spain on the work on electrons, and published... Read more

Business

view channel

Interest in Commercial Applications for Proteomics Continues to Grow

Increasing interest in the field of proteomics has led to a series of agreements between private proteomic companies and academic institutions as well as deals between pharmaceutical companies and novel proteomics innovator biotech companies. Proteomics is the study of the structure and function of proteins.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.