Features | Partner Sites | Information | LinkXpress
Sign In
GLOBETECH PUBLISHING LLC
PURITAN MEDICAL
GLOBETECH PUBLISHING LLC

Boosting Blood System Protein Complex Protects Against Radiation Toxicity

By BiotechDaily International staff writers
Posted on 02 Jul 2012
New research has shown that boosting a protein pathway in the body’s blood-making system protects laboratory mice from otherwise lethal radiation poisoning.

Scientists reported findings from a multi-institutional study--posted online June 23, 2012, in the journal Nature Medicine--that open the possibility for new treatments against radiation toxicity during cancer treatment or environmental exposures--such as in a nuclear explosion or accident.

By identifying a target-specific intervention to protect the hematopoietic system against radiation toxicity, the study addresses a largely unmet challenge, according to the researchers. “These findings suggest that pharmacologic augmentation of the activity of the Thbd-aPC pathway by recombinant Thbd [thrombomodulin] or aPC [activated protein C] might offer a rational approach to the mitigation of tissue injury and lethality caused by ionizing radiation,” the scientists wrote in their article. “Recombinant human aPC has undergone extensive clinical testing in patients, and recombinant soluble human Thbd is currently being investigated for efficacy in antithrombotic therapy in humans. Our data encourage the further evaluation of these proteins for their radio-mitigating activities.”

The study revealed an earlier unknown function of the Thbd-aPC pathway in radiation mitigation. The pathway is typically known for its ability to prevent the formation of blood clots and help the body fight infections. The researchers found the pathway helps blood cells in the bone marrow recover from injury caused by radiation exposure. They demonstrated that pharmacologic boosting of this pathway with two drugs assessed for the treatment of thrombosis or infection (recombinant Thbd and aPC, respectively) can be utilized in mice to prevent death caused by exposure to lethal doses of radiation.

In all cases of treatment with recombinant soluble Thbd or aPC, the result was faster recovery of hematopoietic progenitor cell activity in bone marrow and a decrease in the harmful effects of lethal total body irradiation. When treatment was with aPC, these benefits occurred even when treatment was delayed for 24 hours. The scientists cautioned that their study involves early laboratory research in mice, so it remains to be assessed how the findings may translate to human treatment. Researchers also need to determine precisely why the protective function of the targeted Thbd-aPC protein pathway appears to function so well in mice.

Researchers noted that the protective benefits of Thbd-aPC happened only in vivo in irradiated mouse models. The researchers reported that overexpressed Thbd in irradiated laboratory cell cultures did not offer the same protective benefits, as the cells did not survive. This indicates the protective benefits of Thbd on blood making cells in irradiated mouse models depends on the help of additional cells or molecules in the body, which the researchers are trying to identify in a follow-up study.

The study involves extensive multiscientist collaborations that combined earlier independent lines of research by groups at Cincinnati Children’s Hospital Medical Center (OH, USA) and the University of Ulm (Germany), led by Hartmut Geiger, PhD, division of experimental hematology/cancer biology and the department of dermatology/allergic diseases; the University of Arkansas (Little Rock, USA), led by Martin Hauer-Jensen, MD, PhD, division of radiation Health, the College of Pharmacy and the Central Arkansas Veterans Healthcare System; the Blood Research Institute (Milwaukee, WI, USA), led by Hartmut Weiler, PhD, and The Scripps Research Institute (La Jolla, CA, USA), led by John H. Griffin, PhD, department of molecular and experimental medicine.

The researchers reported that this study reveals a global shift to multi-investigator projects that allow a combination of varied expertise by scientists tackling complicated problems from the standpoint of their respective fields. This approach requires the inclination of investigators to share unpublished data and engage in an open collaboration. The researchers also noted that the study highlights the significant of continued federal funding for cutting-edge research that can benefit human health.

Related Links:
Cincinnati Children’s Hospital Medical Center
University of Ulm
University of Arkansas



Channels

Genomics/Proteomics

view channel
Image: Researchers have generated disease-free stem cells from patients with mitochondrial disease that can be converted into any cell type including neuronal progenitors (left) or heart cells (right). These could potentially be used for future transplantation into patients (Photo courtesy of Salk Institute of Biological Studies).

Methods Developed to Generate Normal Stem Cells from Patients with Mitochondrial Defects

A recent paper described two methods for converting cells from patients with mitochondrial defects into normal pluripotent stem cells that could be induced to differentiate into several different types of tissues.... Read more

Drug Discovery

view channel
Image: A new micelle delivery system for the protective polyphenols resveratrol and quercetin (mRQ) may have value in cancer chemotherapy (Photo courtesy of Oregon State University).

Micelles Containing Resveratrol and Quercetin Reverse Doxorubicin Cardiotoxicity

Cancer researchers blocked the toxic effects of the cancer drug doxorubicin (DOX) by administering it together with the plant antioxidants resveratrol and quercetin. Although in use for more than 40... Read more

Lab Technologies

view channel
Image: The Leica DM2500 LED Microscope for clinical laboratories and research applications (Photo courtesy of Leica Microsystems).

New LED Microscope Completes Line of Clinical and Research Tools

A popular microscope used for both clinical and research applications is now available with LED illumination. The Leica (Wetzlar, Germany) DM2500 and DM2500 LED microscopes represent a class of tools... Read more

Business

view channel

Teva Buys Allergan Generic Business Unit

Teva Pharmaceutical Industries (Petah Tikva, Israel) has bought the Allergan (Irvine, CA, USA) generic drugs business for USD 40.5 billion in cash and stock, solidifying its position as the world's largest generic drug maker. Under the terms of the agreement, Teva will pay USD 33.75 billion in cash and USD 6.... Read more
 
Copyright © 2000-2015 Globetech Media. All rights reserved.