Features Partner Sites Information LinkXpress
Sign In
Advertise with Us
RANDOX LABORATORIES

Modified Osteoporosis Drugs Kill Malaria Parasite in Mice

By BiotechDaily International staff writers
Posted on 20 Mar 2012
Print article
Chemical modification of the bone-resorption bisphosphonate drugs zoledronate and risedronate enables effective targeting of the elusive intraerythrocytic form of the malaria parasite Plasmodium falciparum.

The modification enables the drugs to cross the cell membrane and thereby readily enter the infected red blood cells (RBCs). Here they act as potent inhibitors of a key enzyme, geranylgeranyl diphosphate synthase (GGPPS), in isoprenoid biosynthesis, an essential survival and defense pathway for the parasite. The drugs have little effect on this pathway in human or mouse cells.

Scientists identified the modified drugs with an in vitro assay targeting the RBC form of P. falciparum in screening a library of several hundred drug compounds known to be isoprenoid biosynthesis inhibitors. Based on "growth-rescue" and enzyme-inhibition experiments, GGPPS was shown to be a major target for the most potent leads, labeled BPH-703 and BPH-811, lipophilic analogs of zoledronate and risedronate.

“We found that compounds that were really active had a very long hydrocarbon chain. These compounds can cross the cell membrane and work at very low concentrations,” said Eric Oldfield, PhD and professor of chemistry at the University of Illinois at Urbana-Champaign (UIUC; IL, USA). Compared to the parent compounds, the lipophilic analogs show enhanced binding to the target GGPPS enzyme and only the lipophilic species are active in cells.

In vivo, the drugs were effective against Plasmodium with no observed toxicity to the mice – BPH-703 and BPH-811 tested in mice both resulted in major decreases in parasitemia and 100% mouse survival.

“It’s important to find new drug targets because malaria drugs last only a few years, maybe 10 years, before you start to get resistance,” Oldfield said. Study coauthor Yonghui Zhang, research scientist in Prof. Oldfield’s lab, noted, “We are the first to show that the enzyme GGPPS is a valid target for malaria."

The study appears in the March 5, 2012, edition of the journal Proceedings of the National Academy of Sciences USA. These results are also of broader interest as they indicate that it may be possible to overcome barriers to cell penetration of existing bisphosphonate drugs in this and other systems by simple covalent modification to form lipophilic analogs that retain their enzyme-inhibition activity and are also effective in vitro and in vivo.

Related Links:
University of Illinois at Urbana-Champaign




Print article

Channels

Genomics/Proteomics

view channel
Image: The green-labeled cells show a basal cell carcinoma in mouse tail epidermis derived from a single mutant stem cell and expanding out of the normal epidermis stained in red (Photo courtesy of Adriana Sánchez-Danés, Université Libre de Bruxelles).

Stem Cells Not Progenitors Can Trigger Skin Cancer Growth

Cancer researchers have discovered that stem cells can initiate development of malignant skin tumors, while progenitor cells are limited to triggering only benign growths. A progenitor cell is similar... Read more

Biochemistry

view channel
Image: A space-filling model of the anticonvulsant drug carbamazepine (Photo courtesy of Wikimedia Commons).

Wastewater May Contaminate Crops with Potentially Dangerous Pharmaceuticals

Reclaimed wastewater used to irrigate crops is contaminated with pharmaceutical residues that can be detected in the urine of those who consumed such produce. Investigators at the Hebrew University... Read more

Lab Technologies

view channel
Image: A 3D nanofiber net formed by the supergelators to trap oil molecules (Photo courtesy of IBN at A*STAR / Institute of Bioengineering and Nanotechnology).

Effective Cleanup with Smart Material That Forms Oil-Trapping Net

Researchers have developed supergelators – an organic oil-scavenging material that rapidly forms a 3D net to trap oil molecules, gelatinizing into solidified masses that can be more easily removed from... Read more

Business

view channel

Sartorius Acquires US Start-up ViroCyt

Sartorius AG (Göttingen, Germany), a pharmaceutical and laboratory equipment provider, has acquired ViroCyt Incorporated (Broomfield, CO, USA), a start-up in the field of rapid virus quantification, in a deal valued at approximately USD 16 million. ViroCyt’s automated platform integrates instruments, software and reagents... Read more
Copyright © 2000-2016 Globetech Media. All rights reserved.