Features | Partner Sites | Information | LinkXpress
Sign In
PZ HTL SA
GLOBETECH PUBLISHING LLC
GLOBETECH PUBLISHING LLC

Natural Method for Clearing Cellular Debris Inspires Lupus Treatment

By BiotechDaily International staff writers
Posted on 06 Mar 2012
Cells that die naturally generate a large amount of internal debris that can trigger the immune system to attack the body, leading to diseases such as lupus. Now, researchers report that an enzyme known to help keep a woman’s immune system from attacking a fetus also helps block development of these autoimmune diseases that target healthy tissues.

The study’s findings lead to toward new treatment approaches for autoimmune diseases, which are increasing in light of a germ-conscious society that regularly destroys many of the previously pervasive microbes that made the immune system more tolerant. “The basic premise of lupus is you have lost normal tolerance to yourself, your own proteins, and DNA,” said Dr. Tracy L. McGaha, Georgia Health Sciences University (GHSU; Augusta, USA) immunologist and corresponding author of the study published ahead of print February 21, 2012, in the journal Proceedings of the [US] National Academy of Sciences.

The investigators discovered that IDO, or indoleomine 2,3-dioxegenase, helps promote tolerance to debris generated by natural cell death and that when IDO is removed from the mixture, the debris triggers an immune response that can induce autoimmune disease. In mice genetically engineered to develop lupus, blocking IDO resulted in earlier, more aggressive disease. “This connects IDO and macrophages. It’s a newly described role for IDO in regulation of tolerance toward self,” Dr. McGaha remarked. Accordingly, increasing IDO production or its downstream effects might be a way to regain lost tolerance, he said.

The researchers assessed activity in the spleen; a hard-working immune organ that constantly filters blood. In a flawlessly organized defense, the entrance to the spleen is surrounded by immune cells that search the blood for viruses, bacteria, even fat and cholesterol floating by.

A neighboring subset of macrophages, which are basically scavengers, then capture and consume the undesirables, according to Dr. McGaha said. Fascinatingly, a lot of what macrophages consume is dead immune cells.

Macrophages also appear to help keep the peace by preventing the immune system from joining the fray. Dr. McGaha earlier found that if he destroyed macrophages, then fed the spleen dead cells, there was inflammation instead of calm. “That tells us there is something inherent in this subset of macrophages that is important for the suppressive process,” Dr. McGaha said referencing the study published in 2011 in the journal Blood.

The new study revealed that IDO is part of that “something.” Efficient elimination of cell debris while keeping nearby immune cells quiet is important because some debris is known to grab the attention of the immune system, According to Dr. McGaha. He noted that it is normal--and healthy--for damaged cells to become targets. “We are really interested in this process of normal cell debris removal because in lupus, it's thought to be one of the main drivers of inflammation,” he said.

The immune system has points of expansion and regulation where it decides whether or not to act. Knowing key points, such as IDO’s regulatory role, provides treatment targets that can interrupt a destructive cascade of immune activity, Dr. McGaha noted. Earlier research has shown evidence of self-attack is present many years before disease symptoms appear, he said.

Environmental hazards, such as a nasty sunburn, can be the first trigger of the abnormal immune response in diseases such as lupus. In healthy individuals, the immune system rises to the occasion of an infection then goes back to baseline. In autoimmune disease, patients tend not to return to normal levels.

GHSU’s Drs. Andrew Mellor and David Munn reported in 1998 in the journal Science that the fetus expresses IDO to help avoid rejection by the mother’s immune system. Following studies have shown tumors also use it and that it could help transplanted organs escape rejection. They suggested that Dr. McGaha evaluate IDO as a regulatory process used by macrophages.

Related Links:
Georgia Health Sciences University


BIOSIGMA S.R.L.
RANDOX LABORATORIES
SLAS - Society for Laboratory Automation and Screening
comments powered by Disqus

Channels

Genomics/Proteomics

view channel
Image: A 3-dimensional picture reveals how the antibodies in the experimental drug Zmapp bind to Ebola virus (Photo courtesy of the Scripps Research Institute).

Electron Microscope Imaging Shows How Experimental Anti-Ebola Drug Works

Electron microscope imaging has revealed how the experimental drug ZMapp binds to the Ebolavirus and provides insights into how the drug prevents growth of the pathogen. ZMapp, which was developed by... Read more

Drug Discovery

view channel

Omega 3 Found to Improve Behavior in Children with ADHD

Supplements of the fatty acids omega 3 and 6 can help children and adolescents who have a specific kind of have attention deficit hyperactivity disorder (ADHD). Moreover, these findings indicate that a customized cognitive training program can improve problem behavior in children with ADHD. Statistics show that 3%–6%... Read more

Biochemistry

view channel

Blocking Enzyme Switch Turns Off Tumor Growth in T-Cell Acute Lymphoblastic Leukemia

Researchers recently reported that blocking the action of an enzyme “switch” needed to activate tumor growth is emerging as a practical strategy for treating T-cell acute lymphoblastic leukemia. An estimated 25% of the 500 US adolescents and young adults diagnosed yearly with this aggressive disease fail to respond to... Read more

Lab Technologies

view channel

e-Incubator Technology Provides Real-Time Imaging of Bioengineered Tissues in a Controlled Unit

A new e-incubator, an innovative miniature incubator that is compatible with magnetic resonance imaging (MRI), enables scientists to grow tissue-engineered constructs under a controlled setting and to study their growth and development in real time without risk of contamination or damage. Offering the potential to test... Read more

Business

view channel

Two Industry Partnerships Initiated to Fuel Neuroscience Research

Faster, more complex neural research is now attainable by combining technology from two research companies. Blackrock Microsystems, LLC (Salt Lake City, UT, USA), a developer of neuroscience research equipment, announced partnerships with two neuroscience research firms—PhenoSys, GmbH (Berlin, Germany) and NAN Instruments, Ltd.... Read more
 
Copyright © 2000-2014 Globetech Media. All rights reserved.